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Bell’s theorem : experimental tests and implications 
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Abstract 

Bell’s theorem represents a significant advance in understanding the conceptual 
foundations of quantum mechanics. The theorem shows that essentially all local 
theories of natural phenomena that are formulated within the framework of realism 
may be tested using a single experimental arrangement. Moreover, the predictions 
by these theories must significantly differ from those by quantum mechanics. 
Experimental results evidently refute the theorem’s predictions for these theories and 
favour those of quantum mechanics. The conclusions are philosophically startling: 
either one must totally abandon the realistic philosophy of most working scientists, 
or dramatically revise our concept of space-time. 
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1. Introduction 

Realism is a philosophical view, according to which external reality is assumed to 
exist and have definite properties, whether or not they are observed by someone. So 
entrenched is this viewpoint in modern thinking that many scientists and philosophers 
have sought to devise conceptual foundations for quantum mechanics that are clearly 
consistent with it. One possibility, it has been hoped, is to reinterpret quantum 
mechanics in terms of a statistical account of an underlying hidden-variables theory 
in order to bring it within the general framework of classical physics. However, Bell’s 
theorem has recently shown that this cannot be done. The theorem proves that all 
realistic theories, satisfying a very simple and natural condition called locality, may be 
tested with a single experiment against quantum mechanics. These two alternatives 
necessarily lead to significantly different predictions. The  theorem has thus inspired 
various experiments, most of which have yielded results in excellent agreement with 
quantum mechanics, but in disagreement with the family of local realistic theories. 
Consequently, it can now be asserted with reasonable confidence that either the thesis 
of realism or that of locality must be abandoned. Either choice will drastically change 
our concepts of reality and of space-time. 

The  historical background for this result is interesting, and represents an extreme 
irony for Einstein’s steadfastly realistic position, coupled with his desire that physics 
be expressable solely in simple geometric terms. Within the realistic framework, 
Einstein et aZ(l935, hereafter referred to as EPR) presented a classic argument. As a 
starting point, they assumed the non-existence of action-at-a-distance and that some 
of the statistical predictions of quantum mechanics are correct. They considered a 
system consisting of two spatially separated but quantum-mechanically correlated 
particles. For this system, they showed that the results of various experiments are 
predetermined, but that this fact is not part of the quantum-mechanical description 
of the associated systems. Hence that description is an incomplete one. T o  complete 
the description, it is thus necessary to postulate additional ‘hidden variables’, which 
presumably will then restore completeness, determinism and causality to the 
theory. 

Many in the physics community rejected their argument, preferring to follow a 
counter-argument by Bohr (1935), who believed that the whole realistic viewpoint is 
inapplicable. Many others, however, felt that since both viewpoints lead to the same 
observable phenomenology, a commitment to either one is only a matter of taste. 
Hence, the discussion, for the greater part of the subsequent 30 years, was pursued 
perhaps more at physicists’ cocktail parties than in the mainstream of modern 
research. 

Starting in 1965, however, the situation changed dramatically. Using essentially 
the same postulates as those of EPR, JS Bell showed for a Gedankenexperiment of 
Bohm (a variant of that of EPR) that no deterministic local hidden-variables theory 
can reproduce all of the statistical predictions by quantum mechanics. Inspired by that 
work, Clauser et aZ(l969, hereafter referred to as CHSH) added three contributions. 
First, they showed that his analysis can be extended to cover actual systems, and that 
experimental tests of this broad class of theories can be performed. Second, they 
introduced a very reasonable auxiliary assumption which allows tests to be performed 
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with existing technology. Third, they specifically proposed performing such a test 
by examining the polarisations of photons produced by an atomic cascade, and 
derived the required conditions for such an experiment. 

Curiously, the transition to a consideration of real systems introduced new aspects 
to the problem. EPR had demonstrated that any ideal system which satisfies a locality 
condition must be deterministic (at least with respect to the correlated properties). 
Since that argument applies only to ideal systems, CHSH therefore had postulated 
determinism explicitly. Yet, it eventually became clear that it is not the deterministic 
character of these theories that is incompatible with quantum mechanics. Although 
not stressed, this point was contained in Bell’s subsequent papers (1971, 1972)-any 
non-deterministic (stochastic) theory satisfying a more general locality condition is 
also incompatible with quantum mechanics. Indeed it is the objectivity of the associ- 
ated systems and their locality which produces the incompatibility. Thus, the whole 
realistic philosophy is in question! Bell’s (1971) result, however, is in a form that is 
awkward for an experimental test. T o  facilitate such tests, Clauser and Horne (1974, 
hereafter referred to as CH) explicitly characterised this broad class of theories. They 
then gave a new incompatibility theorem that yields an experimentally testable result 
and derived the requirements for such a test. Although such an experiment is difficult 
to perform (and in fact has not yet been performed), they showed that an assumption 
weaker in certain respects than the one of CHSH allowed the experiments proposed 
earlier by CHSH to be used as a test for these theories also. 

The interpretation of all of the existing results requires at least some auxiliary 
assumptions, although experiments are possible for which this is not the case. Even 
though some of the assumptions are very reasonable, this fact allows loopholes still 
to exist. Experiments now in progress or being planned will be able to eliminate most 
of these loopholes. However, even now one can assert with reasonable confidence 
that the experimental evidence to date is contrary to the family of local realistic 
theories. The construction of a quantum-mechanical world view as an alternative to 
the point of view of the local realistic theories is beyond the scope of this review. 

Section 2 of this review summarises the argument of EPR, appendix 1 discusses 
various critical evaluations of it, and appendix 2 summarises briefly the history of 
hidden-variables theories. Section 3 describes the versions of Bell’s theorem discussed 
above as well as some others. Section 4 discusses the requirements for a fully general 
test and shows why such an experiment is a difficult one to perform. Section 5 is 
devoted to a description of the cascade-photon experiments proposed by CHSH. 
First, it discusses the auxiliary assumptions by CHSH and CH. Second, calculations 
of the quantum-mechanical predictions for these experiments are summarised. Third, 
there is a discussion of the actual cascade-photon experiments performed so far 
(Freedman and Clauser 1972, Holt and Piplrin 1973, Clauser 1976, Fry and Thompson 
1976). All but the second agree very well with the quantum-mechanical predictions, 
thus providing significant evidence against the entire family of local realistic theories. 
Section 5 ends with a critique of the CH and CHSH assumptions. Section 6 sum- 
marises and discusses related experiments measuring the polarisation correlation of 
photons produced in positronium annihilation (Kasday et al 1975, Faraci et a1 1974, 
Wilson et a1 1976, Bruno et aZl977) and an experiment measuring the spin correlation 
of proton pairs (Lamehi-Rachti and Mittig 1976). Section 7 is devoted to an evalua- 
tion of the experimental results obtained so far and to the prospects for future 
experiments. 
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2. The Einstein-Podolsky-Rosen argument 

A profound argument for the thesis that a quantum-mechanical description of a 
physical system is incomplete was presented by EPR in 1935. Their argument rests 
upon three premises. (i) Some of the quantum-mechanical predictions concerning 
observations on a certain type of system, consisting of two spatially separated particles, 
are correct. (ii) A very reasonable criterion for the existence of ‘an element of physical 
reality’ is proposed: ‘If, without in any way disturbing a system, we can predict with 
certainty (i.e., with probability equal to unity) the value of a physical quantity, then 
there exists an element of physical reality corresponding to this physical quantity’ 
(EPR 1935, p777). ( 5 )  There is no action-at-a-distance in nature. 

The  system which they study consists of two particles, which are prepared in a 
state such that the sum of their momenta in a given direction ( P I  +p2) and the differ- 
ence of their positions (x1 - x2) are both definite. The wavefunction 6(x1- x2 - a )  
quantum mechanically describes this system, for it is an eigenfunction of the operator 
X I  - x2 with eigenvalue a,  and of the operator p l  +p2 with eigenvalue 0. By measuring 
the position of particle 1 one can predict with certainty, according to quantum 
mechanics, what value will be found if the position of particle 2 is then measured 
(immediately). I n  view of premise (iii) the prediction is made without in any way 
disturbing particle 2, since the two particles are spatially separated. EPR therefore 
infer that the position of particle 2 has a definite predetermined value, not included 
in the description by the wavefunction 6(x1- x2 - a). By an analogous argument EPR 
also infer that the momentum of particle 2 has a definite value, contrary to the un- 
certainty principle. (Of course, the same argument, starting with measurements made 
upon particle 2, allows them to infer that particle 1 also has both a definite position 
and a definite momentum.) Hence EPR reach the conclusion that at least in this 
particular situation the quantum-mechanical description is incomplete. Although 
they do not use the term ‘hidden variables’, this expression can be appropriately used 
to apply to the parts of the complete state which are not comprised in the quantum- 
mechanical description, and which suffice to fix the outcomes of measurements that 
are not fully determined quantum mechanically. 

I n  our opinion the reasoning of EPR is impeccable, once an ambiguity in the phrase 
‘can predict’, which occurs in the second premise, is removed. I n  a narrow sense, one 
can predict the value of a quantity only when an experimental arrangement is chosen for 
determining the value of that quantity. In  a broad sense, one can predict the value of a 
quantity if it is possible to choose an experimental arrangement fop determining it. If the 
narrow sense is accepted, then the argument of EPR clearly does not go through, since 
the experimental arrangements for measuring the position and momentum of a particle 
are incompatible. From the standpoint of physical realism the broad sense of ‘can 
predict’ is the appropriate one, since from that viewpoint, one conceives a physical 
system to have a definite set of properties independently of their being observed, but 
which may of course be explored at the option of the experimenter. I n  the situation 
envisaged by EPR one can predict, in the broad sense, both x2 and p2. Hence if this 
sense of the ambiguous phrase is adopted, their argument does go through. An 
assumption of physical realism clearly underlies the argument by EPR. Bohr’s (1935) 
answer to EPR, defending the completeness of quantum mechanics, consisted essen- 
tially of a critique of the realism which they had taken for granted (see appendix 1). 

A variant of EPR’s argument was given by Bohm (1951), formulated in terms of 
discrete states. He considered a pair of spatially separated spin-4 particles produced 
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somehow in a singlet state, for example, by dissociation of the spin-0 system. Various 
spin components of each of these particles may then be measured independently at the 
option of the experimenter. The  spin part of the state vector is given by: 

Here Q .Auh*( 1) = f u ~ * (  l), so that US( 1) quantum mechanically describes a state in 
which particle 1 has spin ‘up’ or ‘down’, respectively, along the direction R;  uli*(2) 
has an analogous meaning concerning particle 2. Since the singlet state Y is spheric- 
ally symmetric, A can specify any direction. Suppose that one measures the spin of 
particle 1 along the 4 axis. The  outcome is not predetermined by the description Y. 
But from it, one can predict that if particle 1 is found to have its spin parallel to the 
4 axis, then particle 2 will be found to have its spin antiparallel to the 4 axis if the 
4 component of its spin is also measured. Thus, the experimenter can arrange his 
apparatus in such a way that he can predict the value of the f component of spin of 
particle 2 presumably without interacting with it (if there is no action-at-a-distance). 
Likewise, he can arrange the apparatus so that he can predict any other component 
of the spin of particle 2. The conclusion of the argument is that all components of 
spin of each particle are definite, which of course is not so in the quantum-mechanical 
description. Hence, a hidden-variables theory seems to be required. 

Some comments are in order concerning EPR’s premises in the light of Bell’s 
theorem. If premise (i) is taken to assert that all of the quantum-mechanical predic- 
tions are correct, then Bell’s theorem has shown it to be inconsistent with premises 
(ii) and (iii). Actually, in the body of their argument EPR used only a few predictions 
with probability one, which are atypical in quantum mechanics, whereas the dis- 
crepancies which Bell exhibited between local realistic theories and quantum mech- 
anics involved statistical predictions. If it was EPR’s intention to aim at a hidden- 
variables theory which is local and realistic, and which agrees with all the statistical 
predictions of quantum mechanics-as many readers have understood them-then, 
of course, Bell’s theorem shows mathematically that this aim cannot be achieved. We 
shall not try to answer the historical question of their intent. Two statements, however, 
can be made with confidence. First, the argument from their premises is valid, once 
the above-mentioned ambiguity is cleared up. Second, the physical situation which 
they envisaged is of immense value for examining the philosophical implications of 
quantum mechanics and (via Bell’s work) for exploring the limitations of the family of 
local realistic physical theories. 

3. Bell’s theorem 

There is a vast literature concerning the consistency of hidden-variables theories 
with the algebraic structure of the observables of quantum mechanics. The major 
results of this literature are summarised in appendix 2, but they are not indispensable 
for understanding the content and implications of Bell’s theorem. Heuristically, 
however, this literature was very important for Bell’s work. In  the course of preparing 
a review article on ‘impossibility’ proofs of hidden-variables interpretations of 
quantum mechanics, Bell studied the theories proposed by de Broglie (1928) and 
Bohm (1952). He noticed, as Bohm had already realised, that in order to reproduce 
the quantum-theoretic predictions for a system of EPR type, they postulated the 
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existence of non-local interactions between spatially separated particles. Bell was thus 
led to ask whether the peculiar non-locality exhibited by these models is a generic 
characteristic of hidden-variables theories that agree with the statistical predictions 
by quantum mechanics. He  proved (Bell 1965) that the answer is positive for the 
whole class of deterministic hidden-variables theories in the domain of ideal apparatus 
and systems. Stronger versions of this theorem, which also constrain actual systems, 
were later proved by Bell himself and by others. These versions state that essentially 
all realistic local theories of natural phenomena may be tested in a single experimental 
arrangement against quantum mechanics, and that these two alternatives necessarily 
lead to observably different predictions. 

In  this section we review some of these derivations, which we shall refer to 
collectively as ‘Bell’s theorem’. Our purpose here is to arrive at versions of Bell’s 
theorem which satisfy the following criteria. (i) The hypotheses seem to be inescapable 
for anyone who is committed to physical realism and to the non-existence of action-at- 
a-distance. (ii) Discrepancies with the predictions by quantum mechanics occur in at 
least one situation which is experimentally realisable. Criterion (i) is, in our opinion, 
very close to having been achieved, although the hypotheses are violated by some 
pathological instances of local realistic theories. Criterion (ii) has essentially been 
achieved; however, the experiment which it specifies is difficult, and has not yet been 
performed. Additional assumptions, not implicit in locality and realism, have been 
relied upon to allow easier experiments to be considered. (The assumptions and 
experiments are discussed in 445 and 6.) Unfortunately, this fact leaves open various 
loopholes (discussed in ss5-7). I t  must be stressed, however, that the existence of 
these loopholes in no way diminishes the mathematical validity of the versions of 
Bell’s theorem presented in this section. 

3.1. Detennizistic local hidden-variables theories and Bell (1  965) 

In  his paper of 1965 Bell considered Bohm’s Gedankenexperiment, described above 
in $2, That system consists of two spin-Q particles, prepared in the quantum-mechani- 
cal singlet state Y given by equation (2.1). Let Ab be the result of a measurement of 
the spin component of particle 1 of the pair along the direction d, and let Bfi be that 
of particle 2 along direction 6. We take the unit of spin as A/2; hence, Ab, Bs= k 1. 

The  product A,.Bfi is a single observable of the two-particle system (even though 
two distinct operations are needed in order to measure it). It is represented quantum 
mechanically by a self-adjoint operator on the Hilbert space associated with the 
system. For this Gedankenexperiment one can readily calculate the quantum-mechanical 
prediction for the expectation value of this observable-f : 

[E (&, 6)l.p = (Y I a1 .doz. 6 I Y) = - d .  6 .  (3 * 1) 
A special case of equation (3.1) contains the determinism implicit in this idealised 

system. When the analysers are parallel, we have: 

[E(ri, d)]y”= - 1 (3.2) 
for all &. Thus, one can predict with certainty the result B, by previously obtaining 

f The notation of this review is to use the wavefunction or the letters QM as a subscript 
to denote the quantum-mechanical prediction. We omit the subscript for predictions by the 
class of theories included by the postulates of Bell’s theorem, when this convention does not 
cause confusion. 
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the result A (EPR’s premise (ii)). Since the quantum-mechanical state Y does not 
determine the result of an individual measurement, this fact (via EPRs argument) 
suggests that there exists a more complete specification of the state in which this 
determinism is manifest. We denote this state by the single symbol A, although it 
may well have many dimensions, discrete and/or continuous parts, and different parts 
of it interacting with either apparatus, etc. Presumably the quantum state Y is a 
related partial specification of this state. We thus define a deterministic hidden- 
variables theory as any physical theory which postulates the existence of states of a 
system, for which the observables of quantum mechanics always have definite values. 

Let A be the space of the states X for an ensemble comprised of a very large number 
of the observed systems. We make no restrictions as to what type of space this is, 
nor to its dimensionality, nor do we require linearity for operations with it, but of 
course we require that a set of Bore1 subsets of A be defined, so that probability 
measures can be defined upon it. We represent the distribution function for the states 
A on the space A by the symbol p. For this ensemble we take p to have norm one: 

JA dp=  1. (3.3) 

In  a deterministic hidden-variables theory the observable Ai. B6 has a definite 
value (Ad. Ba) (A) for the state A. For these theories Bell defined locality as follows: 
a deterministic hidden-variables theory is local if for all d and 6 and all A E A we have: 

(AL.Ba) (A)=A,(X).Bs(X). (3 *4) 
That is, once the state X is specified and the particles have separated, measurements of 
A can depend only upon X and d but not 6. Likewise measurements of B depend only 
upon h and 6, Any reasonable physical theory that is realistic and deterministic and 
that denies the existence of action-at-a-distance is local in this sense. (More general 
definitions of ‘local’ will be considered in 93.3.) For such theories the expectation 
value of Ai.Ba is then given by 

E(a,  b )=  JA Aa(A)Bs(X) dp. (3.5) 
Bell’s (1965) proof of the theorem consists of showing that if the locality condition (3.4) 
and the condition (3.2) for partial agreement with quantum mechanics are both 
satisfied, then the expectation values satisfy a simple inequality. This inequality is 
then an alternative prediction to that by quantum mechanics for the expectation value 
of A,.Bs. The predictions made by this inequality are quantitatively different from 
those of equation (3.1). 

The  demonstration is straightforward. Equation (3.2) can hold if and only if 

Ad( A) = - Bi( A) (3.6) 

holds for all h E A. Using equation (3.6) we calculate the following function, which 
involves three different possible orientations of the analysers : 

E(d ,  & ) - E ( d ,  e)= - JA [A;(h)As(h)-A,(X)A,(X)] dp 

= - JA Aa(h)As(h)[l -&(h)&(A)] dp. 

Since A, B = F 1, this last expression can be written : 
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Using equations (3.3), (3 - 5 )  and (3.6) we have: 

( E ( & ,  6 ) - E ( d ,  8)I < lSE(6, 8). (3.7) 

Inequality (3.7) is the first of a family of inequalities which are collectively called 
'Bell's inequalities'. 

A simple instance of the disagreement between the predictions of equation (3.1) 
and inequality (3.7) is provided by taking d ,  6 and 2 to be coplanar, with 2 making an 
angle of 2n13 with 8, and 6 making an angle of n/3 with both d and c". Then: 

- 1 .  8.8= -1 d.b=b,e=' 2 2 '  
For these directions: 

1 [E(d ,  6)l, - [E(4 c")l.r I = 1 while 1 + [E@, 2)Jr= t .  
These values do not satisfy inequality (3 .7). Hence the quantum-mechanical predic- 
tion and that by inequality (3.7) are incompatible, at least for some pairs of analyser 
orientations. 

The  version of Bell's theorem just proved can be summarised as follows: no 
deterministic hidden-variables theory satisfying equation (3 .2) and the locality 
condition (3.1) can agree with all of the predictions by quantum mechanics concerning 
the spins of a pair of spin-4 particles in the singlet state. 

3.2. Foreword to the non-idealised case 

Any argument whose scope is strictly limited to a discussion of ideal systems is of 
little value to working physicists, who endeavour to describe systems that can and do 
occur in practice. The immense heuristic value of Bell's (1965) argument, outlined in 
$3.1, is that it leads to formulations that provide direct experimental predictions for 
systems which can actually be produced in a laboratory. By itself, the derivation given 
in $3.1 is insufficient to do this, because of its reliance upon the existence of a pair of 
analyser orientations for which there is a perfect correlation. That is, the above proof 
hinges strongly upon the condition that equation (3.2) hold exactly. Use is made of 
this equation in three ways. First, it allows the proof to go through mathematically. 
Second, determinism is derivable from it and does not have to be postulated separately, 
Finally, for reasons to be discussed, it assumes that the locality postulate is reasonable. 

Unfortunately, equation (3.2) cannot hold exactly in an actual experiment. Any 
real detector will have an efficiency less than loo%, and any real analyser will have 
some attenuation as well as some leakage into its orthogonal channel. Since we are 
attempting to deal with not just one but a whole class of theories, it is quite possible 
that in some of these theories the above imperfections are inherently correlated with 
the measurement and detection processes in a way that depends upon the state A. 
The problems which arise when these three implications cannot be drawn will be 
considered in turn. 

The  problem concerning the derivation's mathematical reliance upon equation 
(3.2) was first solved by CHSH. They demonstrated that a different proof of the 
theorem follows from the above formalism, without requiring equation (3.2) to hold. 
They derived a different inequality that is violated by the quantum-mechanical 
predictions for systems which never achieve the perfect correlation of equation (3 ,2), 
but which do achieve a necessary minimum correlation. The inequality which results 
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from their analysis is: 

I E(a, b) - E(U’, b) I -k E(Q, b‘) -k E(LP’, b’) 6 2. (3.8) 
When equation (3.2) does hold, inequality (3.8) implies inequality (3.7) as a special 
case. Since essentially this same inequality was subsequently derived by Bell (1971) 
for the more general non-deterministic case presented in 93.4, we will not present the 
CHSH derivation here. 

The second problem-that determinism is no longer derivable-is not a serious 
one. One needs merely to assume that determinism holds for the theories under 
consideration. Indeed this was the approach by CHSH. Thereby, they produced a 
very powerful result, which constrains deterministic local hidden-variables theories 
for realisable systems. However, it was subsequently noticed by Bell (1971, 1972) 
and Clauser and Horne (1974) that this assumption is not needed. On the contrary, 
a weakening of the locality requirement can be made which still allows inequality 
(3.8) to be derived, but which significantly increases the scope of the theorem. The 
theorem thus applies to a class of fundamentally stochastic theories, as well as to 
deterministic theories in which there are hidden variables in the apparatus. 

The third problem is a very delicate one, yet one of great importance. In  the 
idealised situation, whenever a particle is observed at one apparatus an associated 
particle is always observed at the other apparatus. The selection of the sub-ensemble 
of observed particles from among all of those emitted by the source depends only 
upon the collimator and source geometry and can have no dependence upon the 
parameters ri and 6. Hence p was defined for the observed particles, and one can then 
be confident that it is independent of ci and 6. 

In  the actual case, on the other hand, observed particles are paired with particles 
which, for some reason, are not observed at all, i.e. in neither a spin-up nor a spin- 
down channel. 

The sub-ensemble which we used in the idealised case is then further partitioned 
into four disjoint sub-ensembles, i.e. those for which (a) both particles are observed, 
(b) only particle 1 is observed, (c) only particle 2 is observed, and (d) neither particle 
is observed. The distribution p of the union of these four sets is clearly independent 
of ci and 6. However, the mode of partitioning may well depend upon ci and 6, since 
the detection and various attenuation processes occur ‘downstream’ from the analysers. 
Hence there is no reason to expect that the composition, and thus the distribution, 
of each sub-ensemble is independent of ri and 6. (This fact was noticed by Pearle 
(1970) and Clauser and Horne (1974). The latter contrived a hidden-variables theory 
in which p becomes dependent upon ri and 6 when sub-ensemble (a) alone is con- 
sidered and which yields exactly the quantum-mechanical predictions for the system.) 
Thus if we are to use equation (3.3) for a normalisation condition, and to expect that 
p is independent of ri and 6, the ensemble for which it is defined must also include the 
unobserved particles. Since their number is unknown and may be very large, it is no 
longer obvious how to compare the prediction by inequality (3.8) with experiment. 

Three approaches to this problem have been pursued. The approach used by 
CHSH is to introduce an auxiliary assumption, that if a particle passes through a spin 
analyser, its probability of detection is independent of the analyser’s orientation. 
Unfortunately, this assumption is not contained in the hypotheses of locality, realism 
or determinism. Moreover, it also has the undesirable feature that it makes the 
process of ‘passage’ or ‘non-passage’ a primitive one, and thereby excludes from 
consideration theories for which partial passage is appropriate. 
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A second approach, that used by Bell (1971) (although not specifically stated but 
clear from the context), is to employ an auxiliary apparatus (‘event-ready’ detectors) 
to measure the number of pairs emitted by the source. This possibility is shown 
schematically in figure 1. For this scheme, one can simply take the ensemble to 
consist of the particles which actually trigger the ‘event-ready’ detectors. Whether or 
not a triggering occurs clearly does not depend upon the analyser orientations. No 
problem with locality arises from the presence of the signals propagating to the remote 
apparatuses, since these signals can be simply considered as part of the state A. 
Unfortunately, in practice most conceivable ‘event-ready’ detectors depolarise or 
destroy the particles. The  value of this approach is thus limited. 

An altogether difTerent approach was employed by Clauser and Horne (1974). 
They derived an inequality from the hypotheses of locality and realism in which only 
ratios of the observed particle detection probabilities appear, and the normalisation 
condition equation (3.3) is not required for its derivation. The  influence of the size 

Spin ( 2  ) ‘up ’  detector 
8, = c l  

\ 

Neither detector Q&-- , 
B, ,’ Analyser 2 0 

Spin 1;) ‘down’ detector 
8, = -1 

Soin (1 ’UD’ detector 
‘Event- ready’ detectors 

I ‘ x  

Coincidence 

detector 

Apporotus 2 Detector Apparatus 1 
gate signals 

Figure 1. Apparatus configuration used for Bell’s 1971 proof. ‘Event-ready’ detectors signal 
both arms that a pair of particles has been emitted. For a given gate signal, the result 
on either arm is assigned the value + 1 if the corresponding spin-up detector responds, 
- 1 if the spin-down detector responds, and 0 if neither detector responds. 

of the ensemble thus vanishes. Their apparatus arrangement does not have the ‘event- 
ready’ detectors of figure 1, nor does it have two detectors for each apparatus but only 
one. It is thus much simpler, and is shown schematically in figure 2. 

In  the remainder of this section, we will show how these latter two approaches 
proceed. First, however, we will discuss the aforementioned generalisation of the 
locality postulate to include inherently stochastic theories. 

3.3. Generalisation of the locality concept 

Consider either of the experimental configurations for Bohm’s Gedankenexperiment, 
described in $3.2. Actually there is nothing in the proof which requires the systems 
to be spin-4 particles. They may be any discrete-state quantum-mechanically cor- 
related emissions. (However, not all quantum-mechanically correlated systems are 
predicted to violate the resulting inequalities. A careful choice is required to find 
one which is an appropriate test case.) In  Bohm’s Gedankenexperiment the symbols d 
and 6 are taken to represent the orientations of the Stern-Gerlach magnets used for 
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Analyser 2 Analyser 1 

I X 

Detector 2 Source 
Detector 1 

- - 
Apparatus 2 Apparatus 1 

Figure 2. Apparatus configuration used in the proofs by CHSH and by CH. A source 
emitting particle pairs is viewed by two apparatuses. Each apparatus consists of an 
analyser and an associated detector. The analysers have parameters a and b res- 
pectively, which are externally adjustable. In the above example a and b represent 
the angles between the analyser axes and a fixed reference axis. 

measuring the associated spin components. However, in general, a and b may rep- 
resent any associated apparatus parameters under control by the experimenter. As 
before, Aa and Bb represent the measurement outcomes at apparatuses 1 and 2, 
respectively. Appropriate values will be assigned to these outcomes, as necessary. 

The  preceding definition of locality will now be generalised to include systems 
whose evolution is inherently stochastic, as well as to include deterministic systems 
with additional random variables associated with either apparatus, and that may locally 
affect their experimental outcomes. Suppose a pair of correlated systems, which have 
a joint state A, separate. They then continue to evolve perhaps in an inherently 
stochastic way, and given A, a and b, one can define probabilities for any particular 
outcome at either apparatus. We allow that, given A, these two probabilities may each 
depend upon the associated (local) apparatus parameter, a or 6 respectively, and of 
course upon A, but we assume that these probabilities are otherwise independent of 
each other. 

This definition of locality seems very common-sensical. It says that the outcome 
(or the probability of outcomes) of a measurement performed on one part of a compo- 
site system is independent of what aspects of the other component the experimenter 
chooses to measure. It by no means excludes the possibility of obtaining knowledge 
concerning system 2 from an examination of system 1. The state A contains informa- 
tion common to both systems, and a measurement on one of these presumably reveals 
some of this. Nor does it prevent a measurement performed on one component of a 
composite system from locally disturbing that component. What it does prescribe, 
in essence, is that the measured value of a quantity on one system is not causally 
affected by what one chooses to measure on the other system, since the two systems 
are well separated (e.g. space-like separated) when the measurements are performed. 

3.4. Bell’s 1971 proof 

We now describe Bell’s (1971) proof, using this generalised locality definition. 
The apparatus configuration appropriate to this proof was discussed in $3.2 and is 
shown in figure 1. Given that a particle pair was emitted into the associated appara- 
tuses, the results of either measurement can have one of three possible outcomes, to 
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which the following values were assigned by Bell : 

+ 1, ‘spin-up’ detector triggered by particle 1 

Aa( A) = - 1, ‘spin-down’ detector triggered by particle 1 (3.9(a)) I 0, particle 1 not detected 
and 

+ 1, ‘spin-up’ detector triggered by particle 2 

Bb( A) = - 1, ‘spin-down’ detector triggered by particle 2 (3.9(b)) I 0, particle 2 not detected. 

For a given state A of the emitted composite system, we denote the expectation values 
for these quantities by the symbols Aa( A) and B b (  A). In  the general case these average 
values will differ from the values assigned by equations (3.9). Since the values for A 
and B are bounded by 1, it follows that: 

IAa(A)I < 1 I B b ( A ) I  < 1. (3.10) 

E(a,  b)  = j A  &( A)Bb(  A) dp* (3.11) 

Using the general definition of locality of $3.3, we can write the expectation value for 
the product AaBb as: 

Since we are including in our ensemble only those particles which have previously 
triggered the ‘event-ready’ detectors, we are assured that the distribution p and the 
range of integration A are independent of a and b. Now consider the expression: 

E(a, b)-E(a,  b‘)= JA [Aa(h)Bb(X)-Aa(X)Bb.(X)I dp 

where we take a‘ and b’ to be alternative settings for analysers 1 and 2, respectively. 
This can be rewritten as: 

E(a,  b) -E(a ,  b’)=JA Aa(h)Bb(A)[l *&?(A)Bb’(A)] dp 

-JA Aa(A)Bb’(A)[l & A a t ( X ) B b ( A ) ]  dp. 
Using inequalities (3.10), we then have: 

or 

Hence : 

IE(a, b)-E(a,  b’)( < SA [I *Aaf(A)&(A)] dpf  SA [I kAa‘(A)&(A)] dp  

IE(a, b)-E(a,  b’)l < rt [E(a’, b’)+E(a‘, b)]-1-2 dp. 

- 2 < E(a,  b) - E(a,  b‘) + E(a’, b) + E(a’, b’) < 2. (3 * 12) 

By re-definition of the parameters a, a‘, b and b’ in the central expression of (3.12), 
the minus sign may be permuted to any one of the four terms. Inequality (3.12) and 
its permutations are one form of Bell’s inequality, and represent a general prediction 
for the theories covered by the above assumptions. 

I n  order to complete the proof of the theorem, it is sufficient to show that in at 
least one situation the predictions by quantum mechanics contradict inequality (3.12). 
The quantum-mechanical prediction [E(&, b ) ] Q M  for the two spin-4 particle example, 
when due account is taken of imperfections in the analysers, detectors and state 
preparation, will be of the form: 

[E(&, ~ ) ] Q M =  Cri.6 (3.13) 
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where the coefficient C is bounded by one for actual systems, and is equal to plus or 
minus one only in the idealised case. Suppose we take 6, d’, 6 and 6‘ to be coplanar 
vectors as shown in figure 3 with (b = n/4, and calculate: 

There is a wide range of values for C for which the prediction by inequality (3.12) 
disagrees with that by equation (3.13). Hence the proof is complete. 

3.5. The proof by Clauser and Home 
Clauser and Horne (1974) also proved Bell’s theorem for general local realistic 

theories, including inherently stochastic theories. Their proof is noteworthy in that it 

a 

Figure 3. Optimal orientations for a, a’, 6 and 6’. If the correlation is of the form C1+ Cz 
cos n+, then the maximum violation of the inequalities occurs at n+ = n/4. 

defines an experiment which might actually be performed and which does not require 
that auxiliary assumptions be made. The  apparatus configuration which they used 
for the proof was introduced by Clauser et al(1969) and is shown schematically in 
figure 2. I n  contrast to the configuration of figure 1, theirs has only one detector in 
each arm and no ‘event-ready’ detectors. For each analyser/detector assembly there 
are only two possible outcomes: ‘count’ and ‘no-count’. The results are thus formu- 
lated in terms of probabilities for single and coincidence counts, rather than the 
expectation values considered in Ss3.1 and 3.4. 

Suppose that during a period of time, while the adjustable parameters have the 
values a and b, the source emits, say, N of the two-component systems of interest. 
For this period, denote by Nl(a) and Nz(b) the number of counts at detectors 1 and 2, 
respectively, and by N~z(a ,  b)  the number of simultaneous counts from the two 
detectors (coincidence counts). When N is sufficiently large, the probabilities for these 
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results for the whole ensemble (with due allowance for random errors) are given by: 

(3.14) 

CH derive an inequality which constrains ratios of the probabilities in equations 
(3 .14)  rather than their absolute magnitudes. Thereby, the influence of the quantity 
N vanishes, so that it does not have to be measured. 

Their derivation is straightforward. Following the discussion of 93.3, we expect 
a well-defined probability pl(A, a )  of detecting component 1, given the state A of the 
composite system and the parameter a of the first analyser; a probability $4 A, b) of 
detecting component 2, given A and b;  and a probability p 1 4  A, a, b)  of detecting both 
components, given A, a and b. Following our discussion of 53.3, we assume that, 
given A, a and b, the probabilities pl(A,  a )  and pz(A, b) are independent. Thus we 
write the probability of detecting both components as 

PlZ(X, a, b)=p1(A, .)pz(A, b). (3 .15)  

The ensemble average probabilities of equations (3 .14)  are then given by: 

jApl(h a> dp 
SA$z(A, b) dp  (3 .16)  

P12(a, b)= j*Pl(A, a)Pz(A, b) dp. 

To  proceed, CH introduce the following lemma, the proof of which may be found in 
their paper: if x ,  x’, y ,y’ ,  X ,  Y are real numbers such that O<x, x ’ 6 X  and 
0 <y, y’ < Y,  then the inequality : 

- X Y  < xy - xy‘ + x’y + x’y’ - Yx’ - X y  < 0 (3 .17)  

holds. Inequality (3.17) and equation (3.15) yield: 

- 1 <p12( A, a, b) -p14 A, a, b’) +pl2( A, a’, b)  A, a’, 6‘) -pl(A, a‘) -&(A, b )  6 0. 
(3 .18)  

Integrating inequality (3.18) over A with distribution p ,  and using equation (3.16),  
one obtains the result: 

(3 .19)  

(Obtaining the left-hand inequality also required the use of equation (3 .3) ,  but the 
right-hand one did not. Since the left-hand inequality requires a measurement of the 
absolute magnitude of probabilities, the ‘event-ready’ detectors of figure 1 will be 
needed to test it.) The right-hand side of inequality (3.19) can be rewritten in the 
following form : 

- 1 <plz(a, 6) -plz(a, b’) +plz(a‘, b)  +p12(a‘, b’) --$I(.’) -pz(b) < 0. 

As desired, it involves only a quantity that is independent of N .  Using equations 
(3.14),  and defining R(a, b) as the rate of coincident detections, and rl(a) and rz(b) as 



1896 7 F Clauser and A Shimony 

the rate of single-particle detections by either apparatus, inequality (3 .20(a)) can be 
rewritten directly in terms of a ratio of observable count rates: 

< 1.  (3*2O(b)) 
R(a, b )  - R(a, b’) + R(d ,  b)  + R(a’, b’) 

n(a‘) + r2(b) 

Inequalities (3.20) are thus a general prediction for any local realistic theory of natural 
phenomena. 

I n  order to complete the proof of the theorem it suffices to exhibit an instance in 
which the quantum-mechanical counterpart to inequalities (3.20) fails. This is done 
in 94, when we discuss the experimental requirements for a valid test of these theories. 

3.6. Symmetry considerations 

Almost all of the experiments which have been proposed for testing the predictions 
by Bell’s inequalities involve pairs of polarised particles (either photons or massive 
particles). I n  these experiments the parameters a and b, considered abstractly in 
993.4 and 3.5, are taken to be orientation angles relative to some reference axis in a 
fixed plane. In  most of these experiments, the method of preparing the pairs of 
polarised particles attempts to achieve cylindrical symmetry about a normal to the 
fixed plane and reflection symmetry with respect to planes through this normal. This 
symmetry is exhibited in the quantum-mechanical predictions for detection rates 
and correlations : 

[Pl(a)]QM and [rl(a)]QM are independent of a. 
[&(b)]QM and [r2(b)]QM are independent of b. 
@JIZ(~) ]QM,  [R(a, b)]QM and [E(a, b)]QM are functions only of I a - b 1 . 

We now assume that the corresponding predictions for local realistic theories exhibit 
the same symmetries: 

pl(a) =*I and rl(a) 3 rl are independent of b 

p2(b) 3 p 2  and r4b) 1 2  are independent of b (3.21) 

p12(a, b)=p12(la-bl) ,  R(a, b ) r R ( l a - b l )  and E(a, b)=E( la-b l ) .  

We must emphasise two points concerning equation (3.21). First, these symmetry 
relations do not simply follow from the corresponding quantum-mechanical symmetry 
relations or from the symmetry of the experimental arrangement, for one does not 
know what symmetry-breaking factors may lurk at the level of the hidden variables. 
Second, no harm is done in assuming equations (3.21), since they are susceptible to 
experimental verification. 

Now suppose that we take a, a’, b and b’ so that: 

Ia-bI = la’-bl= Ia’-b’I =&Ia-b‘I =$ 

as in figure 3.  With the use of equation (3.21), inequalities (3.12) and (3.20) simplify 
to 

I 3E(4) - E(34) I 2 (3.22) 
and 

S(4) 1 (3 .23) 
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where we have defined : 

in terms of probabilities, or equivalently in terms of count rates: 

3.7. The proof by Wigner, Belinfante and Holt 

A simple method of proving Bell’s theorem for deterministic local hidden-variables 
theories was invented independently by Wigner (1970) and Belinfante (1973), and 
extended by Holt (1973). The method consists of subdividing the space A of states 
of a two-component system into subspaces corresponding to various possible values 
of the observables of interest, and then performing some easy calculations on the 
measures of these subspaces. Rather than duplicate their proofs, which are readily 
available, we show how their method can be used to derive the inequality of CH. 

Consider the apparatus configuration of figure 2. Assume that the detection or non- 
detection of component 1 is completely determined by the parameter a of the first 
analyser and the state of the composite system, but is independent of the parameter b 
of the other analyser, and so forth for component 2. As such, the discussion is for the 
restricted situation in which determinism applies. Under this assumption, we can 
exhaustively subdivide the space A into 16 mutually disjoint subspaces A (ij; k l ) ,  
where each letter can take on the value 0 or 1, with 1 denoting detection and 0 non- 
detection; with i a n d j  referring to the results if the parameter of the first analyser is 
chosen respectively to be a or a’; and with h and 1 referring to the results if the para- 
meter of the second analyser is chosen respectively to be b or b’. For example, 
A (10; 01) is the subspace in which component 1 will be detected if its associated para- 
meter is chosen to be a but will not if the parameter is chosen to be a’, while component 
2 will not be detected if its associated parameter is chosen to be b but will be detected 
if that parameter is chosen to be b’. (Note that there is no question of simultaneously 
examining detection or non-detection for two different values of a parameter. Indeed, 
such observations are mutually exclusive. Rather, the subspace is defined in terms of 
what will happen if any one of the various experiments is performed. Since the 
theories are assumed to be deterministic, these values are all determined once a ,  b, X 
and the apparatus configuration are specified.) If a probability measure p is assumed 
to be given on A (determined presumably by the way in which the composite system 
is prepared), then p(Y;  k l )  is defined to be the probability that the composite state is in 
A(ij; kl ) .  Clearly, all p( i j ;  k l )  are non-negative. Because the 16 subspaces are disjoint 
and exhaustive, we have : 

(3.25) 

We now define pl(a)  to be the Probability that component 1 will be detected if its 
parameter is chosen to be a;p2(b )  to be the probability that component 2 will be 
detected if its parameter is chosen to be b ;  and pl2(a, b) to be the probability of joint 
detection of both components if the two parameters are chosen respectively to be a 
and b. Analogous definitions are given for the other values of the parameters. Then 
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we have : 

I t  follows that: 

p12(a, b)  -p12(a, b‘) +~12(a’ ,  b) +~12(a’ ,  b’) -pi(a’> - P @ )  
= -p(11; 01)-p(l1; 00)-p(10; 11)-p(l0; Ol)-p(01; 10) 

-p(OI; 00)-p(O0; 11)-p(OO; 10). (3.27) 

Consequently, we recover inequality (3.19) derived by Clauser and Horne for 
the more general stochastic case: 

- 1 <p12(a, b) -p12(a, b’) +p12(a’, 6 )  +p12(a’, b’) -pi(a’) -p2(b) 6 0. 

The demonstration of the incompatibility between this inequality and quantum 
mechanics is thus the same as that of $3.5, and hence the theorem is proved. 

3.8. Stapp’s proof 
Stapp’s version of Bell’s theorem (1971, 1977) appears to be very general, for it 

dispenses with all assumptions about the state of the system and about probability 
measures on the space of states. The proof was generalised by Eberhard (1977) to 
include realisable systems. Stapp considered a long series of N occurrences of Bohm’s 
Gedankenexperiment. In  each occurrence a pair of spin-$ particles is produced in the 
singlet state in a space-time region So. The particles propagate in opposite directions 
along a given axis. Particle 1 proceeds to a space-time region SI, where it is deflected 
‘up’ or ‘down’ by a Stern-Gerlach magnet oriented in either the d or the d‘ direction, 
and particle 2 proceeds to the region S2 where it is deflected up or down by a magnet 
oriented in either the 6 or the 6’ direction. SI and S2 are supposed to have space-like 
separation, and the choice for orienting the first magnet along d or d‘ is made when 
particle 1 is in SI,  and similarly with the choice for orienting the second magnet. Let 
the number 1 or - 1 be recorded for a particle entering the field of a Stern-Gerlach 
magnet accordingly as it is deflected ‘up’ or ‘down’. Let y, j (d,  6) (where a= 1, 2 and 
j =  1, . . ., N )  be the number recorded for the cuth particle of the j th  pair if the two 
magnets are oriented in the d and 6 directions respectively, and let r,j(d, 6’), ~, j (Ci l ,  6) 
and yaj (d’ ,  6’) have analogous meanings. Clearly the orientations d and d’ are mutually 
exclusive, as are 6 and 6‘. Although only one of the four possible pairs of orientations 
(a, b), (d ,6’) ,  (a, b), (d’,  6’) can occur in the real world, Stapp made an assumption 
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of ‘counterfactual definiteness’, that raj(&, 6), raj(ci, I?), etc, are all definite numbers. 
In  addition, he made an assumption of individual locality, that: 

rlj(d, 6)=r1,(d, 61) (3 .28(a))  
?lj(cil, 6)=rl j (d’ ,  a’) ( 3  * 2 W ) )  
rag(d, 6 )  = r23(d’, 6 )  ( 3  * 2 W )  

rzj(ci, 6’) = r2j(d1, Q. ( 3  *28(d))  
Stapp then showed that the 8N numbers rap(&, a), etc, must disagree with some of the 
statistical predictions of quantum mechanics. Some critics of Stapp have argued that 
his assumption of counterfactual definiteness is understandable only from the stand- 
point of a deterministic local hidden-variables theory. Stapp (1978, $4) has replied, 
however, that his assumption requires no commitment to determinism, but only to 
the possibility of speaking (as is commonly done in the sciences) of possible worlds as 
well as the actual one. He makes the explicit assumption that each of the four choices 
( d ,  6), ( d ,  6’), (d ’ ,  6) and (d’ ,  6‘) is made in some possible world. It may nevertheless 
be objected that Stapp has not given a reason for demanding the existence of a quad- 
ruple of possible worlds which mesh together as in equations (3.28(a)-(d)). The  
combination of no action-at-a-distance with the idea of possible worlds only seems to 
require four pairs of possible worlds, one pair meshing as in equation (3 .28(a)) ,  one 
as in equation (3.28(b)),  etc. It is not obvious why these four relations need to govern 
a cluster of four possible worlds unless determinism is supposed. An answer to this 
objection is provided by Stapp (1978), in which the following equivalence theorem is 
proved. 

Let I be the set of individual outcomes raj(c, d ) ,  where c is d or d’, d is 6 or 6’, 
01 is 1 or 2, a n d j  is 1, . . . , N.  Let P(I )  be the set of probabilities 

p= ({rl I d},  {r2 I S}, {Tl, y 2  I ci, 6)) 

{Tl I d}=  N(r1, d) /N 
(where N(r1, ci) is the number of j such that rl =rl j (d ,  6 ) = q j ( d ,  6’) by individual 
locality), 

{r i ,  r2 I d,  6) = ~ ( r i ,  r2, d, 6) 
(where N(r1, r2, d ,  6 )  is the number of j such that r1= rlj(d,  6) and r2 = 1.44 s)), etc. 

Let LP be the set of P which satisfy the following probabilistic locality conditions: 
there exists a discrete set of A, a probability weight function p defined on this set, and 
probabilities p1( A, d, T I ) ,  p 4  A, 6, r2) for the outcomes rl and r2 respectively (given 
A and given d or 6), such that: 

determined by the appropriate frequencies in I :  

{n, r214 6>=C P ( A l P l ( A ,  4 r1lp2(A, 6 ,  y 2 )  
1 

{rl I ci> = C P ( 4 P l (  A, ci, r1) (3 .29)  
A 

{r21~)=CP(A)Pl(A,  6, r2). 
Finally, let L be the set of I which satisfy the individual locality conditions ( 3  .28(a)- 
(d) ) .  Then the equivalence theorem asserts (i) if I E L, then P ( I )  E Lp, (ii) if P E LP, 
then there is an I E L  such that P(I )  is approximately equal to P. 



1900 J F Clauser and A Shimony 

Note that (3.29) is essentially the CH probabilistic locality condition, except that 
a sum over discrete values of h is used instead of an integral over the space A; but 
since the integral can always be approximated by a sum, this difference is not crucial. 
Because of this equivalence theorem, the theorem of CH and of Bell that no P which 
belongs to L p  can agree statistically with quantum mechanics entails that no I which 
belongs to L can agree statistically with quantum mechanics and, conversely, the 
theorem of Stapp that no 1 belonging to L can agree statistically with quantum 
mechanics implies the theorem of CH and Bell. Stapp’s equivalence theorem, there- 
fore, shows that, contrary to appearances, his proof of Bell’s theorem and those of CH 
and Bell (1971) are of equal strength. J S Bell (personal communication) has remarked 
that part (ii) of Stapp’s equivalence theorem is an example of the possibility of simu- 
lating a stochastic process with a deterministic one. 

3.9. Other versions of Bell’s theorem 

Several other versions of Bell’s theorem have been discovered. The proofs are 
mathematically correct, but with hypotheses in some respects problematic, either 
from a philosophical point of view or from their inherent restriction to idealised 
systems. 

A very general derivation of Bell’s theorem has been presented by Bell (1976). It 
was critically evaluated by Shimony et aZ(1976), who challenged one of the premises. 
Bell (1977) replied to this criticism. If we retain the notation of $3.8, we can express 
the essential assumption of Bell (1976) in the following way: the complete state of 
region SI is independent of the choice between 6 and 6’ in S2, and likewise the com- 
plete state of S2 is independent of the choice between d and d’ in SI. Shimony et a1 
(1976) criticised this assumption on the ground that the backward light cones of SI 
and S2 overlap in a region S, and it is possible that a factor in S affecting the choice 
between 6 and 6’ leaves some trace in SI. Bell’s reply (1977) to this objection stresses 
the spontaneity of the experimenter’s choice between 6 and 6‘ and between d and d’, 
but this answer seems to us to depend upon too strong a commitment to indeterminism 
for his argument to be fully general (see also Shimony 1978). 

The proof by d’Espagnat (1975) has the virtue of staying quite close to the original 
ideas of EPR by reasoning in terms of the intrinsic properties of the system. We shall 
not try to summarise his argument, partly because of its length and partly because of a 
premise which is impossible to be realised experimentally. D’Espagnat assumes (as 
Bell did in 1965) that one has a system like a pair of spin-4 particles in the singlet 
state, such that one can measure an observable of one of the pair and then infer with 
absolute certainty the value of a corresponding observable of the other pair (equation 
(3.2)). The  same criticism can also be made of the arguments of Gutkowski and 
Masotto (1974), Selleri (1978) and Schiavulli (1977) but it should be noted that they 
derive a number of generalisations of Bell’s inequalities which have not been obtained 
elsewhere. 

4. Considerations regarding a general experimental test 

Following Bell’s (1965) results, many readers believed that local realistic theories 
were ipso facto discredited, because quantum mechanics has been so abundantly 
confirmed in a variety of experimental situations. Indeed, some of the most striking 
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confirmations of quantum mechanics, such as the spectrum of helium, concerned 
correlated pairs of particles. However, upon careful examination, one finds that 
situations exhibiting the disagreement discovered by Bell are rather rare, and none 
had ever been experimentally realised. Moreover, the reasoning of the previous 
sections indicates that the treatment of correlated but spatially separated systems may 
well be the point of greatest vulnerability of quantum mechanics. In  view of the 
consequences of Bell’s theorem it is thus important to design experiments to test 
explicitly the predictions made for local realistic theories via Bell’s theorem. 

Starting with the simple configurations specified in $3, the first problem is to find 
a suitable system whose quantum-mechanical predictions directly violate the predic- 
tions in the theorem, but additionally one that is accessible with available technology. 
In  fact, this has not yet been done! (Possible avenues in this direction are discussed 
in $7.) I n  the present section we examine the requirements for a fully general test, 
and see why the problem is difficult. Since the presence of auxiliary counters is 
required by the apparatus configuration of figure 1, and usually these depolarise or 
destroy the emissions, we will confine our discussion to the apparatus configuration of 
figure 2. 

We thus compare the quantum-mechanical predictions for this configuration with 
those by inequality (3.23). The left-hand side of inequality (3.19) is not considered 
here, since it cannot be expressed in terms of ratios of observable probabilities. It will, 
however, become useful for the discussion of $5 .  

4.1. Requirements for a general experimental test 

quantum-mechanical predictions take the following form: 
Consider an experiment, with a configuration similar to that of figure 2, whose 

[$12($)]QM= $171y2f1g[c+lc+~ f F COS (n$)] 
[ p l ] Q M = &  ylflc+l (4.1) 
[ p Z ] Q M = &  r/2f2e+2- 

This general form is characteristic of the quantum-mechanical predictions for the 
actual experiments of interest (see, for example, equation (5.15)). In  these expressions 
q represents the effective quantum efficiency of detector i(i= 1,2), and 

€+i = €Mi + €,t E-’ E €Mi - €mi. (4.2) 
The terms  EM^ and c,Z are the maximum and minimum transmissions of the analysers 
relative to the pertinent orthogonal basis. The functions f 1  and f i  are the collimator 
efficiencies, i.e. the probability that an appropriate emission enters apparatus 1 or 2. 
Typically, these are simply proportional to the collimator acceptance solid angles. 
The function g is the conditional probability that, given emission 1 enters apparatus 
1, then emission 2 will enter apparatus 2. The function F is a measure of the initial- 
state purity and the inherent quantum-mechanical correlation of the two emissions. 
For the actual cascade-photon experiments (see $5) ,  these functions depend on the 
collimator solid angles. The values of n are 1 or 2 depending upon whether the 
experiment is performed with fermions or bosons. 

Inserting equation (4.1) into the definition of S($), equation (3.24(a)), we find 
the quantum-mechanical prediction for this function to be given by : 

SQM($) = yg (2c++ [3 cos (n+) - cos (3n$)] F ( E - ~ / E + ) .  (4.3) 



1902 J F Clauser and A Shimony 

Here for simplicity we have taken r 771 = 772, fi = f2, E+ = ~+1= ~ + 2  and E- 5 e-1 = E-2. 

Selecting the optimum value y5= .rr/4n, one finds that the condition for a violation of 
inequality (3.23) is given by : 

vg€+[d2 ( € - / E + ) 2  F f  11 > 2. (4.4) 
Thus, a correlation experiment with values in the domain specified by inequality (4.4) 
is capable of distinguishing between the prediction, inequality (3.23), and that of 
quantum theory, equation (4.3). Although such experiments are apparently possible, 
there is at present no existing experimental result in this domain, and thus none in 
violation of any inequality which does not require additional assumptions for its 
derivation. 

For a direct test of inequality (4.4) the requirements are stringent, which accounts 
for the fact that, so far, no such experiment has been attempted. 

(i) A source must emit pairs of discrete-state systems, which can be detected with 
high efficiency. 

(ii) Quantum mechanics must predict strong correlations of the relevant observ- 
ables of each pair (polarisations in the experiments so far). Correspondingly, the 
ensemble of pairs must have high quantum-mechanical purity. 

(iii) The analysers must be capable of allowing systems in certain states to pass 
with great efficiency, while simultaneously rejecting nearly all of those in orthogonal 
states. 

(iv) The collimators (and filters if these are necessary to remove unwanted emis- 
sions, etc) must have very high transmittances and not depolarise the emissions. 

(v) The source must produce the systems via a two-body decay. A three- (or 
more) body decay cannot be used, because the resulting angular correlation will 
makeg41.  

(vi) Another requirement should be added in order to achieve an airtight argument 
against locality: the parameters a and b must be rapidly changed while the emissions 
are in flight. A detection event should be space-like separated from the corresponding 
parameter change event at the far apparatus (see $7). This suggestion was first made 
by Bohm and Aharonov (1957). 

For a practical experiment, it is of course also necessary for the counting rate to 
be sufficiently high to make the required integration time reasonable. 

4.2. Three important experimental cases 

Let us examine how the failure of any of these parameters to approximate the 
ideal case prevents a violation of inequality (3.23) from arising. Figure 4 shows the 
prediction by equation (4.3) for three important cases of interest, along with the 
prediction by inequality (3.23). 

Case I ,  nearly ideal. In  the domain of nearly ideal apparatus, we have g z  e + z  E-= 

q z  1. For these conditions we find a violation of inequality (3.23) for a wide range of 
4, with a maximum violation at n4 = ~ 1 4 .  
Case II, poor detector eficiencies or eo-focusing. When g < 1 holds, because of imperfect 
collimator alignment and/or a weak angular correlation inherent in a three-body 
decay, or when 274 1 holds, because the detector efficiencies are low, then the ampli- 
tude of S(4) contracts in amplitude about a value close to zero. The quantum- 
mechanical predictions enter a domain where no violation of inequality (3.23) occurs. 
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Figure 4. Typical dependence of S(4) upon nd, for cases 1-111. Upper bound for S(q5) set 
by inequality (3.23) is + 1. Case I experiments (nearly ideal) have ~ M ~ M F M  E + %  
E -  M 1. Case I1 experiments have nearly ideal parameters F M E -  M E+ M 1, but have 
q < 1 and/or g < 1. Case I11 experiments have nearly ideal parameters q Mg M 1, but 
have F e 1  and/or E - / E + < ~ .  

This case is typical of the low-energy cascade-photon experiments to be described 
in $ S .  

Case 111, weak correlation. The third case occurs when the predicted correlation is 
weak. The  correlation coefficient F and/or the parameter €- /e+  may be much less 
than unity. This will occur, for example, if the emissions are only weakly correlated, 
if the initial state is impure, if the emissions suffer significant depolarisation in passing 
through the apparatus, or if the analyser efficiencies are low. The  curve S($) then 
contracts in amplitude symmetrically about a value slightly less than ++, and again 
no violation of inequality (3.23) occurs. This case is typical of the positronium 
annihilation and the proton-proton S-wave scattering experiments to be described 
in $6, 

The  manner in which the amplitude of S($) contracts is of more importance than 
it may seem. T o  perform a test of the local realistic theories in the domain of case I1 
and I11 experiments requires a credible auxiliary assumption that S($) can be rescaled 
somehow to an amplitude sufficient to violate the inequalities. Case I1 experiments 
(discussed in $ 5 )  are more favourable in this respect than are those of case 111. For 
the former, a replacement of p l  and pz (singles rates) with carefully selected coinci- 
dence rates can provide this rescaling at the small price of accepting only a very mild 
auxiliary assumption. On the other hand, rescaling case I11 experiments (see $6) 
requires one to assume a certain ad hoc modification of the basic correlation coefficient 
F. However, the measurement of this coefficient is in many respects a primary 
objective of the experiment. Any such assumption must then be scrutinised very 
carefully, for it inherently becomes the weak point of the experiment. 

5. Cascade-photon experiments 

The essential problem in testing the predictions in Bell’s theorem against those 
by quantum mechanics is to find experimentally realisable situations in which the 
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quantum-mechanical predictions directly violate Bell's inequalities. In  94 we showed 
that to do so with available apparatus is difficult. The situation is not hopeless, 
however. Clauser et a1 (1969) showed that with a mild supplementary assumption, 
actual experiments are predicted by quantum mechanics to yield a violation of Bell's 
inequality, and they proposed such an experiment. 

Their suggestion is to measure the correlation in linear polarisation of photon 
pairs emitted in an atomic cascade. Figure 5 shows a schematic diagram of a typical 
apparatus for doing this, that of Freedman and Clauser (1972)) who reported the first 
such test. The  photons were emitted in a J = O-tJ = 1 4  = 0 atomic cascade. The  
decaying atoms were viewed by two symmetrically placed optical systems, each 
consisting of two lenses, a wavelength filter, a rotatable and removable polariser, and 
a single-photon detector. The following quantities were measured: R(y3), the coinci- 
dence rate for two-photon detection as a function of the angle between the planes of 
linear polarisation, defined by the orientations of the inserted polarisers; RI ,  the 

Figure 5. Schematic diagram of apparatus and associated electronics of the experiment by 
Freedman and Clauser. Scalers (not shown) monitored the outputs of the discrim- 
inators and coincidence circuits (figure after Freedman and Clauser). 

coincidence rate with polariser 2 removed; Rz, the coincidence rate with polariser 1 
removed; Ro, the coincidence rate with both polarisers removed. 

The  details of this experiment along with other similar ones will be discussed in 
$5.3. First, however, we describe the auxiliary assumption(s) which render this a 
reasonable test, and present the resulting inequalities. Then we describe the quantum- 
mechanical predictions for this and similar arrangements. 

5.1. Predictions by local realistic theories 

5.1 .l. Assumptions for cascade-photon experiments. The initial assumption by CHSH 
is, given that a pair of photons emerges from the polarisers, the probability of their 
joint detection is independent of the polariser orientations a and b. Clauser and Horne 
(1974) showed that an alternative assumption leads to the same results. Their assump- 
tion is that for every pair of emissions (i.e. for each value of A), the probability of a 
count with a polariser in place is less than or equal to the corresponding probability 
with the polariser removed. The assumption of CH is stronger than that of CHSH 
in so far as it is stated for each value of A, whereas CHSFI make an assertion only for 
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the total sub-ensemble of photons which pass through the polarisers. On the other 
hand, the assumption of CH is more general, in that the processes ‘passage’ and ‘non- 
passage’ through a polariser (which are not observable, and which are inappropriate 
for many possible theories) are not considered primitive. Furthermore, CH only 
assume an inequality, which is weaker than the equality of CHSH. Both assumptions, 
in our opinion, are physically plausible, but each gives a certain loophole to those who 
wish to defend local hidden-variables theories in spite of the experimental evidence 
which will be presented below. 

Let us discuss the consequences of the CH assumption. We denote by the symbol 
00 an apparatus configuration in which the analyser is absent. Let pl(A,  00)  denote 
the probability of a count from detector 1 when analyser 1 is absent and the state of 
the emission is A. A similar probability pz(A, 00)  may be defined for apparatus 2. 
Thus, the assumption is that: 

for every A, and for all values of a and b. Inequalities (5.1) and (3.17) and arguments 
similar to those which led from (3.16) to (3.19) yield immediately the result: 

-p12(00, m ) < p l z ( a ,  b)-plz(a,  b’)+p12(a’, b)+p12(a’, b’)--piz(a’, 0 0 ) - - ~ 1 2 ( 0 0 ,  b )  GO. 

(5 .2)  
Note that all terms in inequality (5.2) are joint probabilities for coincident counts at 
the two detectors. Inequality (3.19), in contrast, contains the two terms p l  and pz,  
which are probabilities of a count at a single detector. Furthermore, both the upper 
and lower limits in inequality (5.2) can be written as a ratio of probabilities, so that 
both can be tested without the need for the ‘event-ready’ detectors of figure 1. 

5.1 -2. Additional symmetries. Again we can invoke a rotational invariance argument 
similar to that of $3.6; thus we require: 

(i) p12(a, 00)  is independent of a, and likewise R l ( a ) ~ R 1  
(ii) plz(00, b)  is independent of 6, and likewise R2(b)=R2 

(iii) p 4 a ,  b)  =p12(+), and likewise R(a, b)= R(+), where r,h = I a - b 1 .  
These conditions are not always satisfied, and they obviously fail when each of the 
particles has a definite linear polarisation. However, for all of the actual experiments 
to be described in this section, the conditions are at least satisfied by the quantum- 
mechanical predictions, and more importantly no experimental deviations from them 
have been detected. It is noteworthy that this set of conditions is frequently satisfied, 
even in situations where some of those of $3.6 are not. For example, in many of the 
cascade-photon experiments, the singles rate r2 contains an extraneous contribution 
from excitation to the intermediate state of the cascade by channels not involving the 
first level of the cascade. Such excitation may result in the emission of polarised light 
at the wavelength of the second photon of the cascade, but no coincidences. 

With these conditions, inequality (5.2) becomes : 

- P I Z ( ~ ,  a) < ~ P I z ( + )  - - P I Z ( ~ + )  -p12(a’, 00)  -p12(0O, b )  < 0 ( 5 . 3 )  
for all a’ and b. 

Since the emission rates in all of the various experiments were held constant, and 
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in most cases monitored by an auxiliary apparatus, we can write the ratios of proba- 
bilities as ratios of count rates: 

m(+>ip12(a t a) = R(+)/Ro 
p12(a, @3)/p12(a, a)=R1/Ro (5 *4) 
p12(a ,  b)/Pl2(@3, @3)=R2IRo. 

Inserting equations (5 .4 )  into inequality (5.3), we can write this form of Bell's in- 
equality in terms of coincidence rates : 

-Ro<3R(+)-R(3+)-R1-  R2<0. (5 .5 )  

Inequality (5.5) was first derived by Clauser et a1 (1969), but by using their alternative 
auxiliary assumption. 

Freedman (1972)  showed that inequality (5.5) can be further contracted to a form 
which is very convenient for comparison with experimental results. If we take the 
optimal value for upper-limit violation by cascade-photon experiments 4 = n/S, then 
inequality (5.5) becomes: 

-Ro< 3R(rr/8)-R(3rr/8)-Rl-R2<0. 

On the other hand, if we take the optimal value for lower-limit violation + = 3 ~ / 8 ,  
using the fact that 9rrjS represents the same angle as rr/8, it becomes: 

- Ro < 3 R ( 3 ~ / 8 )  - R(.ir/8) -RI  - R2 < 0. 
Dividing both inequalities by Ro, and subtracting the second inequality from the 
preceding one, we obtain the simple inequality: 

I R ( T / ~ )  - R ( 3 ~ / 8 )  I /Ro < a. ( 5 . 6 )  
Inequality (5.6) has the advantage that it can be checked by measuring the frequency 
of joint detection of photons with the polarisers in only two different relative orienta- 
tions, and it dispenses with the need to measure rates with only one polariser removed. 

5.2. Qua?atum-mecl'zanical predictions f o r  a J = 0-t 1 + 0 two-photon correlation 

5.2.1, An idealised case. Even if ideal polarisation analysers and photo-detectors are 
assumed, the violation or non-violation of inequality (5.6) depends upon the quantum 
state in which the photon pairs are prepared. It is instructive to demonstrate that a 
violation does occur with perfect apparatus if the photons are propagating in opposite 
directions from the source along the 4 axis, with total angular momentum 0 and 
total parity + 1.  Their state is an ideal limit of ones which can actually be prepared in 
a laboratory. The  polarisation part of the two-photon wavefunction is : 

where o represents polarisation along the 2 axis and (8) represents polarisation 
along the 9 axis, and where the first of two juxtaposed column vectors refers to photon 
1 and the second to photon 2. A projection operator for linear polarisation along an 

(3 
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axis, lying in the x y  plane and making an angle 0 with the f axis is: 

cos20 cos8 sin0 0 

Q( 8) = cos8 sin8 sin28 (5 * 8) 
[o 0 I1 

as one can check by noting that the vector (F!), which represents linear polarisation 
in this direction, is an eigenvector of Q( 0) with eigenvalue 1. Similarly the vector 
(-;A:) , representing linear polarisation perpendicular to this direction, is an eigen- 

vector of Q( 8) with eigenvalue 0, as is (i) which represents polarisation along the 
x axis (which of course is excluded by transversality). Consequently, the quantum- 
mechanical prediction for this case is: 

[R(4)/Ro1Yo= W O  I Q(a)@Q(b) IYO) = B(1 +cos 24) (5.9) 
where, as before, we have taken 4 = I a - b I. From this result we find that the quan- 
tum-mechanical predictions 

[ ~ ( + > / R O  - R(3n/8)/Ro1Yo = B d2 (5.10) 

violate inequality ( 5 . 5 ) .  

5.2.2. Quantum-mechanical predictions for J =  O + l  -+0 cascade, ideal analysers, and 
Jinite solid-angle detectors. Consider a J = O-+J = 1 -+J = 0 atomic cascade in which no 
angular momentum is exchanged with the nucleus, and in which both transitions are 
electric dipole. Since the atom is both initially and finally in states with zero total 
angular momentum, and since there is a parity change in each transition, the emitted 
photon pair has zero total angular momentum and even parity. We can therefore 
exactly write the angular wavefunction of the photon pair as: 

1 Y =  - I: Y1,11(41) Y1,-11(42) - Yl,01(41) Y1,01(42) + ~ 1 , - - 1 ~ ( ~ 1 ) ~ 1 , 1 ~ ( ~ 2 ) ]  (5  * 11) d3 
where q1 and 4 2  are variable directions of propagation of the first and second photons, 
and where Yjml is the spherical vector function for total angular momentum j ,  
magnetic quantum number m, and parity - 1 (see, for example, Akhiezer and Beret- 
stetskii (1965) for notation). Now suppose that the lenses which make the photons 
impinge normally upon the polarisation analysers collect light in cones of half-angle 6, 
The wavefunction of a photon pair which emerges from the pair of lenses can be 
represented as D([)Y, where D(6) is an operator which is exhibited in the appendix to 
Shimony (1971). An argument is outlined in that paper that if 8 is infinitesimal, then 
D(8)Y' is equal (except for normalisation) to the ideal two-photon polarisation vector 
Yo of equation (5.7).  This is a reasonable result, since there is no orbital angular 
momentum if the two photons propagate along a straight 1ine.Therefore the fact that 
the photon pair has total angular momentum 0 implies that it has zero spin angular 
momentum, as in the state YO. Of course, a finite value of 6 is essential in an actual 
experiment in order to obtain a non-vanishing count rate. The  quantum-mechanical 
prediction for the coincidence rates with the polarisation state D ( f ) Y  is then: 

[R(4>PoIucpr = (W)Y I Q(a>osQ(b) I D(6)V = ;I + Pl(0 cos (24) (5 * 12) 
125 
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where F1([) is a monotonically decreasing function, has the value 1 for [ = O ,  and 
diminishes to 0.9876 at [= 30". Equation (5.12) shows a somewhat weaker polarisa- 
tion correlation than one finds in equation (5,9), as a result of the admixture of orbital 
angular momentum states when light is collected in a non-zero solid angle. However, 
the diminution of correlation is small, even for fairly large values of E, and it is evident 
that inequality (5.5) will be violated by the probabilities of equation (5.12), with 
[= 30". 

5.2.3. Quantum-mechanical correlation for J = O-t 1 -+O cascade in an actual experiment. 
I n  an actual experiment one does not have ideal linear polarisation analysers, and 
equation (5.12) must be corrected in order to take into account the inefficiency of 
actual analysers. We let EM$ be the maximum transmittance of the j t h  analyser 
( j=  1,2)  and emj be the minimum transmittance. (The former is 1 and the latter is 0 
for an ideal analyser, but values for the analysers will be given in the summaries below 
of the experiments which have actually been performed.) Then equation (5.9) must 
be replaced by the following: 

(see Clauser et a1 1969, Horne 1970, Shimony 1971). Again, the quantum-mechanical 
counterpart of inequality (5.5) is violated, if suitable values of the transmittances are 
used. 

5.2.4. Other cascades. If the photon pair is obtained from a J =  l+J= 1+J= 0 
cascade with equal populations in the initial Zeeman sublevels and no coherence 
among them (so that the density matrix of the initial level is Q I ) ,  but the preceding 
experimental arrangement is otherwise unchanged, then the quantum-mechanical 
prediction for the probability of joint detection is the same as the right-hand side of 
equation (5.15), except that F1([) is replaced by -F2([), where F2(0)= 1. The func- 
tion F2([) decreases monotonically more rapidly than F1([) (Clauser et a1 1969, 
Horne 1970, Holt 1973). A systematic survey of other possible cascades has been 
made by Fry (1973). 

5.3. Description of experiments 

So far, there have been four experiments of the type just described. Three of 
these have agreed with the quantum-mechanical predictions, and one has agreed with 
the predictions by local realistic theories via Bell's theorem. 
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5.3.1. Experiment by Freedman and Clauser (1972). Freedman and Clauser (1972, see 
also Freedman 1972) observed the 5513 a and 4227 A pairs produced by the 
4p2 1So+4p4s 1P1+4sz IS0 cascade in calcium. Their arrangement is shown sche- 
matically in figure 5. Calcium atoms in a beam from an oven were excited by resonance 
absorption to the 3d4p 1P1 level, from which a considerable fraction decayed to the 
4p2 WO state at the top of the cascade. No precaution was necessary for eliminating 
isotopes with non-zero nuclear spin, since 99.855% of naturally occurring calcium has 
zero nuclear spin. Pile-of-plates polarisation analysers were used, with transmittances 
~ ~ 1 = 0 . 9 7  k 0.01, ~ ~ 1 = 0 * 0 3 8  & 0.004, €$=Om96 k 0.01, ~,2=0*037 f 0.004. Each 
analyser could be rotated by angular increments of n/8, and the plates could be folded 
out of the optical path on hinged frames. The  half-angle 6 subtended by the primary 
lenses was 30". Coincidence counting was done for 100 s periods; periods during 
which all plates were removed alternated with periods during which all were inserted. 
I n  each run the ratios R(n/S)/Ro and R(3n/8)/& were determined. Corrections were 
made for accidental coincidences, but even without this correction, the results still 
significantly violated inequality (5.6). The average ratios for roughly 200 h of running 
time are: 

[R(n/S)/Ro]expt= 0.400 & 0.007 [R(3~/8)/Ro]expt= 0.100 f 0.003 
and therefore: 

in clear disagreement with inequality (5.6). The quantum-mechanical predictions 
are obtained from equation (5.15) (with allowances for uncertainties in the measure- 
ment of the transmittances and the subtended angle) : 

[R(n/8)/Ro - R(3~/8)/Ro]expt= 0.300 f 0.008 

[R(n/8)/Ro-R(3n/8)/Ro]QM=(0'401 & 0*005)- (0.100 & 0*005)=0*301 f 0,007. 
The agreement between the experimental results with the quantum-mechanical 
predictions is excellent. Agreement is also found for other values of the angle $, as 
well as for measurements made with only one or the other polariser removed. 

5.3.2. Experiment by Holt and Pipkin (1973). Holt and Pipkin (1973, see also Holt 
1973) observed 5676 A and 4047 A photon pairs produced by the 91P1-+73S1+63Po 
cascade in the zero nuclear-spin isotope 198Hg (see figure 6 for a partial level diagram 
of mercury). Atoms were excited to the glP1 level by a 100 eV electron beam. The  
density matrix of the glP1 level was found to be approximately Q I by measurements 
of the polarisation of the 5676 A photons, so that equation (5.15) with Fl(6) replaced 
by - F2(f)  is used to calculate the quantum-mechanical predictions for the coinci- 
dence counting rates. Calcite prisms were employed as polarisation analysers, with 
measured transmittances : 

~ ~ 1 = 0 * 9 1 0  2 0.001 €M2=0*880 & 0.001 
< 10-4 10-4. 

The half-angle f was taken to be 13 O ( F 4  13 ") = 0.9509). The quantum-mechanical 
prediction is : 

which only marginally exceeds the value & allowed by inequality (5.6). The experi- 
mental result in 154.5 h of coincidence counting, however, is: 

[R(3n/8)/RO - R(n/8)/Ro]QM=0*333 - 0*067= 0.266 

[R(3n/8)/Ro-R(.rr/8)/Ro],xpt=0.316 5 0.011 -0.099 & 0*009=0.216+ 0.013 
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in good agreement with inequality (5.6) but in sharp disagreement with the quantum- 
mechanical prediction. Since this result is very surprising, Holt and Pipkin took 
great care to check possible sources of systematic error: the contamination of the source 
by isotopes with non-zero nuclear spin, perturbation by external magnetic or electric 
fields, coherent multiple scattering of the photons (radiation trapping), polarisation 
sensitivity of the photomultipliers, and spurious counts from residual radioactivity 
and/or cosmic rays, etc. 

One such systematic error was found in the form of stresses in the walls of the 
Pyrex bulb used to contain the electron gun and mercury vapour. Estimates of the 
optical activity of these walls were then made, and the results were corrected corres- 
pondingly. (The values presented above include this correction.) I t  is noteworthy, 
however, that only the retardation sum for both windows was measured, for light 
entering the cell from one side and exiting through the opposite side. On the other 
hand, in the present experiment in which light exits from both windows, the relevant 
quantitj is the retardation difference. 

It is also noteworthy that in the subsequent experiment by Clauser (95.3.3), a 
correlation was first measured which agreed with the results of Ilolt and Pipkin. 
Stresses were then found in one lens which were due to an improper mounting. 
(These were too feeble to be detected by a simple visual check using crossed Polaroids.) 
The  stresses were removed, the experiment was re-performed, and excellent agreement 
with quantum mechanics was then obtained. On the other hand, IIolt and Pipkin did 
not repeat their experiment when they discovered the stresses in their bulb. 
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A second criticism is that Holt and Pipkin took the solid-angle limit to be that 
imposed by a field stop placed outside the collimating lenses. I t  is possible that lens 
aberrations may have allowed a larger solid angle than they recognised. A ray-tracing 
calculation was in fact performed to assure that this was not the case. However, a solid 
stop ahead of the lens would have given one greater confidence that this did not, in 
fact, occur. 

5.3.3. Experiment by Clauser (1976). Clauser (1976) repeated the experiment of Holt 
and Pipkin, using the same cascade and same excitation mechanism, though with a 
source consisting mainly of the zero-spin isotope 202Hg. (The depolarisation effect 
due to some residual non-zero nuclear spin isotopes was calculated, using some results 
of Fry (1973)) Pile-of-plates polarisers were used with transmittances : 

= 0.965 €ml= 0.011 = 0.972 = 0.008 

and the half-angle 6 taken to be 18.6". The quantum-mechanical prediction is: 

[R(3~/8)/Ro -R(T/8)/&]QM= 0.2841. 

The experimental result, from 412 h of integration, is : 

[R(3~ /8 ) /& - R ( ~ / 8 ) / R o ] e x p t  = 0,2885 & 0.0093 

in excellent agreement with the quantum-mechanical prediction, but in sharp dis- 
agreement with inequality (5.6). 

5.3.4. Experiment by Fry and Thompson (1976). Fry and Thompson (1976) observed 
the 4358 A and 2537 A photon pairs emitted by the 73S1+63P1+61So cascade in the 
zero nuclear-spin isotope ZOOHg. Their experiment is shown schematically in figure 7. 

Figure 7. Schematic diagram of the experimental arrangement of Fry and Thompson. 
Polariser plate arrangement is also indicated. Actual polarisers have 14 plates. 
A, Hg oven; B, solenoid electron gun; C, RCA 8575; D, 4358 A filter; E, 5461 A 
laser beam; F, Amperex 56 DUVP/03; G, 2537 A filter; H, focusing lens; I, pile- 
of-plates polariser; J, laser beam trap; K, atomic beam defining slit; L, light 
collecting lens; M, crystal polariser; N, RCA 8850 (figure after Fry and Thompson). 
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An atomic beam consisting of natural mercury was used as a source of ground-state 
(61So) atoms. The excitation of these to the 73s1 level occurred in two steps at 
different locations along the beam. First, the atoms were excited by electron bom- 
bardment to the metastable 63P2 level. Downstream, where all rapidly decaying 
states had vanished, a single isotope was excited to the 73s1 level by resonant absorp- 
tion of 5461 A radiation from a narrow-bandwidth tunable dye laser. The technique 
provided a high data accumulation rate, since only the cascade of interest was excited. 
Photons were collected over a half-angle f of 19.9" .t 0.3", and pile-of-plates analysers 
were used, with transmittances: 

EM'= 0.98 f 0.01 0.02 F 0.005 CM' = 0.97 i. 0.01 = 0.02 F 0.005. 

The density matrix of the 73s1 level was ascertained by polarisation measurements 
of the 4358 A photons; it was found to be diagonal even though the Zeeman sub- 
levels were not equally populated. The quantum-mechanical prediction is : 

[R(37/8)/Ro - R(7/8)/.??o]~M= 0.294 & 0.007. 

The experimental result is: 

[R(37/8)/Ro - R ( ~ / 8 ) / R o ] e x p t =  0.296 5 0.014 

in excellent agreement with the quantum-mechanical prediction, but again in sharp 
disagreement with inequality (5.5). Because of the high pumping rate attainable with 
the dye laser, it was possible to gather the data in a remarkably short period of 80 min 
which, of course, diminished the probability of errors due to variations in the operation 
of the apparatus, and facilitated checking for systematic errors. 

5.4. Are the auxiliary assumptions for cascade-photon experiments necessary and 
reasonable? 

We have seen that the data from the cascade-photon experiments are suficient 
to refute the whole family of local realistic theories, if either the CHSH or the CH 
auxiliary assumption is accepted. Both assumptions are very reasonable. Yet both 
are conceivably false. One may ask the question: are the experimental data, by them- 
selves, sufficient to refute the theories? Alternatively, is at least some auxiliary 
assumption necessary? The answer was given by CH, who contrived a local hidden- 
variables model, the predictions of which agree exactly with those of quantum 
mechanics. 

One may then ask how reasonable are these assumptions. In  particular do they 
disagree with any known experimental data? A similar question may also be asked 
about the counter-example. I t  seems highly artificial, but are any of its implications 
experimentally testable? 

5.4.1. Critique of the CH and CHSH assumptions. The CHSH assumption (45.1) is, 
given that a pair of photons emerges from the polarisers, the probability of their joint 
detection is independent of the polariser orientation a and b. It may appear that the 
assumption can be established experimentally by measuring detection rates when a 
controlled flux of photons of known polarisation impinges on each detector. From the 
standpoint of local realistic theories, however, these measurements are irrelevant, 
since the distribution p when the fluxes are thus controlled is almost certain to be 
different from that governing the ensemble in the correlation experiments. We thus 
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see no way of directly testing this assumption, and thus no experiments with which it 
disagrees. 

I t  is noteworthy, however, that there exists an important hidden-variables theory- 
the semiclassical radiation theory-which correctly predicts a large body of atomic 
physics data, but which denies both the CHSH assumption as well as a presupposition 
of it. The presupposition is that one can speak unequivocally of a photon’s passage 
or non-passage through the polarisation analysers. In  the semiclassical radiation 
theory, however, a photon partially passes its respective polariser and departs 
with a reduced (classical) amplitude. Furthermore, this amplitude depends upon 
the polariser’s orientation and thereby determines the probability of the photon’s 
subsequent detection (in violation of the CHSH assumption that all photons have the 
same detection probability, independent of either polariser’s orientation). Nonetheless, 
the predictions for this theory are consistent with those by inequality (5.2), and the 
theory is refuted by the cascade-photon experiments (Clauser 1972). Evidently an 
alternative assumption is possible which allows inequality (5.2) to constrain theories 
denying this presupposition. 

Such an assumption was provided by CH. This assumption ($5.1) is that for every 
pair of emissions, the probability of a count with the polariser in place is less than or 
equal to the corresponding probability with the polariser removed. This assumption 
appears reasonable because the insertion of a polarisation analyser imposes an obstacle 
between the source of the emissions and the detector, and it is natural to believe that 
an obstacle cannot increase the probability of detection. T o  be sure, we know of 
situations in which the insertion of an additional optical element (apparently an 
obstacle) does increase the probability of detection, e.g. the insertion of a diagonally 
oriented linear polariser between two crossed polarisers. However, the situation 
appropriate to the CH assumption is quite different from the one just mentioned, 
since no polarising elements follow the inserted polarisers. Moreover, if the third 
polariser is a two-channel device, such as a Wollaston prism, the increased detection 
rate observed in one channel occurs at the expense of the detection rate in the ortho- 
gonal channel. The sum of the rates from both channels actually decreases when the 
second polariser is inserted. Correspondingly, if the third polariser is replaced by a 
polarisation-insensitive detector, in a closer parallel to the situation of the cascade- 
photon experiments, then the detection rate is always reduced when a polariser is 
inserted ahead of this detector. 

These considerations, unfortunately, are by no means sufficient to prove the CH 
assumption, since these observations concern ensemble-average probabilities. The  
C H  assumption requires that the probability be diminished upon the insertion of a 
polariserfor all A. 

5.4.2. The counter-example by Clauser and Home. Clauser and Horne (1974) produced 
a local hidden-variables model whose predictions agree exactly with those by quantum 
mechanics. In  their model the rate at which photons jointly pass through the polari- 
sation analysers is in agreement with Bell’s inequalities, but the joint detection rate 
agrees with the quantum-mechanical predictions. The model requires that the 
detected photon pairs be selected in a very special manner from among those which 
pass through the analysers, and that those which have not passed through a polariser 
have a different detection probability from those which have. Although the selection 
is done entirely locally, it does have the appearance of being highly artificial and, 
indeed, almost conspiratorial against the experimenter. 
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The model applies only as long as the net detector efficiencies are smaller than a 
certain maximum value pax which depends on the analyser efficiencies E+ and E - :  

that is (using the notation of $4) when: 

(5.16) 

With the conditions holding for the experiment by Freedman and Clauser, these 
values are [vflexpt 0.004 and pmax E 0.4. This comparison can be improved some- 
what by reference to some experimental results by Clauser?. Inequality (5.16) then 
becomes Texp tGpWx.  For the experiment by Freedman and Clauser the value 

Despite our caution concerning the CHSH and CH assumptions, we regard the 
experimental refutation which relies upon them to be compelling. I t  is striking that 
only a highly artificial model has so far been found which is local and yet yields 
quantum-mechanical detection rates in the cascade-photon experiments, and even this 
model can be excluded by rather modest improvements in the apparatus. There is 
also some hope for a theorem to the effect that any model consistent with the experi- 
mental data will have anomalous features as does the CH model. 

vexpt z 0.06 holds. 

6. Positronium annihilation and proton-proton scattering experiments 

6.1. Historical background 

Two experiments testing predictions based on Bell's theorem have been performed 
using the high-energy photons produced by positronium annihilation. The historical 
background of these experiments is interesting. Wu and Shaknov (1950) determined 
the parity of the ground state of positronium by a method suggested by Wheeler that 
consisted of measuring the polarisation correlation of y rays produced by positronium 
annihilation. The photons Compton-scattered, and two-photon coincidences were 
observed as a function of azimuthal scattering angles, a and 6. Two relative angles 0 
and ~ / 2  were employed. From the ratio of these two coincidence rates they were able 
to infer that the parity of the ground state is negative. Bohm and Aharonov (1957), 
with different motivations, showed that these data are explained by quantum mech- 
anics if the polarisation state of the photon pair is assumed to be: 

t Clauser (1974) noticed that the parameters of existing experimental results were inappropri- 
ate to determine whether or not transmission and reflection of a photon at a dielectric surface 
(similar to one of the surfaces in a pile-of-plates polariser) are, in fact, mutually exclusive 
possibilities. He thus performed an experiment which confirmed that they are. This behaviour 
is in marked contrast to that of the semiclassical radiation theory, in which a photon is simul- 
taneously transmitted and reflected by the surface. He also performed a variation of this 
experiment (unpublished) in which the dielectric surface was replaced by a fine mesh mirror 
( M 50% transmission), and again photons were observed to be either transmitted or reflected 
but not both simultaneously. One can conclude from this result that, at least for the purposes 
of local realistic theories, the simultaneous emission of a photon into any two different solid- 
angle elements does not occur. Since the probabilities relevant to the CH counter-example are 
conditional upon the photons actually entering the collimator, it follows that the solid-angle 
parameter f can be dropped for the purposes of inequality (5.16). 
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but are incompatible with the assumption that the ensemble of photon pairs can be 
described by a mixture of states, each of which is a product of two single-photon 
polarisation states. They therefore concluded that the data of Wu and Shaknov 
confirm the existence of states of two-particle systems which are ‘non-separable’, even 
though the particles are spatially remote from each other (see appendix 1). 

Clauser et a1 (1969) investigated the possibility of using the arrangement of Wu 
and Shaknov, perhaps with some variation, for the further purpose of checking 
whether the observed frequencies can violate Bell’s inequalities. It is, indeed, easy 
to show that if efficient linear polarisation analysers existed for 0.5 MeV photons 
(with transmittances E M  - Em greater than N 0.83), then the quantum-mechanical 
values for the coincidence rates, with the joint polarisation state given by equation 
(6. l), can violate the inequalities (3.12) or (3.20). Unfortunately no such analysers 
exist, and Compton scattering does no more than give a scattering distribution, 
described by the Klein-Nishina formula, that is dependent upon the direction of 
linear polarisation. They concluded that no variant of the Wu-Shaknov experiment 
can provide a test of the predictions based on Bell’s theorem (see Horne 1970). 

6.2. The experiment by Kasday, Ullman and Wu 

I t  was argued by Kasday et a1 (1970, 1975, hereafter referred to as KUW; see 
also Kasday 1971) that such photon pairs can be used to test the predictions based on 
Bell’s theorem if one accepts two auxiliary assumptions: (i) in principle, ideal linear 
polarisers can be constructed for high-energy photons; (ii) the results, which would be 
obtained in an experiment using ideal analysers, and those obtained in a Compton 
scattering experiment, are correctly related by quantum theory. 

Their experimental arrangement (a variant of that of Wu and Shaknov) is shown 
schematically in figure 8. Positrons were emitted by a 64Cu source, stopped and 

U 

Figure 8. 

D, I 

la I ih I 
Schematic diagram of the experimental arrangement of KUW. The lead colli- 
mator is not shown. (a) Four-fold coincidence event; (b)  (c), three-fold coincidence 
events; (d) detail of scatterer. a, b are the azimuthal angles of the scattered photons. 
(1) Scattered y with energy E,  absorbed by DI, (2) annihilation y,  (3) positron source 
and absorber, (4) light pipe, ( 5 )  plastic scatterer, (6) MgO-coated aluminium light 
reflector (figure after Kasday et al). 
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annihilated in copper at the place labelled by 0. The annihilation y-rays were emitted 
in all directions; the vertical direction was selected by a lead collimator. The  scat- 
terers were plastic scintillators. Lead slits selected a narrow range of acceptance 
azimuthal angle about the angles a and b. The top slit-detector assembly was then 
rotated to vary the relative azimuthal angle. Accepted coincidence events had a four- 
fold coincidence among the two scatterers and two detectors, as well as a sum-energy 
requirement that the total energy deposited in each scatterer plus detector equals the 
annihilation energy. It is noteworthy that this is the only experiment which employs 
the arrangement of figure 1. (Here the ensemble consists of the pairs jointly scattered 
by the scintillators.) 

KUW applied assumptions (i) and (ii) as follows. Imagine two ideal linear 
polarisation analysers in the plane perpendicular to the direction of propagation of the 
selected annihilation photons (the vertical direction in figure S), which are respectively 
oriented in the directions a and b of the two slits. If the state h of the photon pair is 
given, a deterministic hidden-variables theory will determine whether each photon 
will pass through its respective analyser. This is their use of assumption (i), If photon 
1 will pass its ideal analyser, then linear polarisation in the a direction is assigned to it; 
and if photon 2 will correspondingly pass its analyser, then it is assigned linear 
polarisation in the direction b. KUW then use assumption (ii) to assert that the angular 
scattering distribution of each respective photon is given by the Klein-Nishina 
formula (a distribution which is dependent upon the photon’s initial linear polarisa- 
tion). With the Klein-Nishina formula one can calculate the probability that the 
scattered photons will enter the respective acceptance slits. Quantum mechanics 
makes a definite prediction for this joint probability. Deterministic local hidden- 
variables theories together with assumptions (i) and (ii) also imply an inequality 
governing this probability which will disagree with the quantum-mechanical predic- 
tions. The  experimental data of KUW are in good quantitative agreement with the 
quantum-mechanical predictions. 

This experiment is less decisive, in our opinion, as a refutation of the family of local 
realistic theories than are the cascade-photon experiments discussed in $5, because it 
relies upon assumptions which are considerably stronger than the assumption needed 
by the latter. If assumptions (i) and (ii) are not made, then a local hidden-variables 
model can be constructed (Horne 1970, Bell 1971 (see Kasday 1971)) which yields the 
same predictions for the experiment as those by quantum mechanics. This con- 
sideration, by itself, is not a fully sufficient reason to prefer the cascade-photon 
experiments, since a local hidden-variables model, albeit a much more artificial one, also 
exists which yields quantum-mechanical predictions for those experiments (see $5.4). 

The  relative strengths of the supplementary assumptions provides a better reason 
for preference. There is one respect in which assumption (ii) of KUW is quite 
unconvincing. The only definite polarisation states acknowledged by quantum theory 
are the various modes of elliptic polarisation (circular and linear polarisation being 
special cases of these). Since quantum theory can be used to calculate the relationship 
required for assumption (ii) between ideal and Compton polarimeters only when the 
state of a photon is one recognised by quantum theory itself, this assumption pre- 
supposes that photons which enter the Compton polarimeters are in a quantum- 
mechanically describable state. Such a supposition is strongly in conflict with the 
postulates of Bell’s theorem. The state X presumably is not such a state, and moreover 
there is no prescription within quantum theory for calculating the results of an experi- 
ment for these more general states. 
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In  a general hidden-variables scheme, the state X of the photons clearly cannot 
be represented as one of definite linear polarisation (the special case in which it can 
is the hypothesis studied by Furry). KUW’s decomposition of the state X of a photon 
into linear and/or circular polarisation basis states is undoubtedly not possible in 
general. 

Indeed, even in a quantum-mechanical treatment of the problem, the photons are 
acknowledged not to be in a state of definite polarisation. Quantum mechanically, 
neither photon’s polarisation is in a definite state, but each is in what is known as an 
‘improper mixture’ of such states (see d’Espagnat (1976) for a discussion of improper 
mixtures). I n  quantum theory, the only correct procedure for handling such systems 
is to perform calculations for the composite two-photon state. Thus we see that the 
‘marriage’ between quantum mechanics and a general local realistic theory required by 
assumption (ii) results in a fatally incorrect handling of both theories. 

6.3. The experiments by Faraci et al, Wilson et a1 and Bruno et a1 

An experiment very similar to that of KUW (but with 22Na as a source) was 
performed by Faraci et a1 (1974) with very different results. Their data disagree 
sharply with the quantum-mechanical predictions based upon the polarisation state 
of equation (6.1)) and are at the extreme limit permitted by Bell’s inequalities 
(given the assumptions of KUW). Their data also showed a variation in correlation 
strength which depends upon the source-to-scatterer distances. Since their paper is 
quite condensed, it is difficult to conjecture whether or not a systematic error is 
responsible for these results. KUW, however, present various criticisms of this work 
as well as a clarification of various misinterpretations of their own work by these 
authors. 

Wilson et a1 (1976) repeated the experiment using 64Cu as a source. I n  contrast 
with the results of Faraci et al, they found complete agreement with the quantum- 
mechanical predictions, and no significant variation of the correlation strength when 
the scatterer positions were changed. 

Bruno et a1 (1977) also repeated the experiment using 22Na as a source, but used 
alternatively Cu and Plexiglass as the annihilator. T o  discriminate against multiple 
scattering events they imposed a sum-energy restriction as did KUW and Wilson et a1 
(but not Faraci et al) ,  and also varied the scatterer sizes. Residual triplet-positronium 
contribution was ascertained by the use of the different annihilator materials. Again, 
no violation of the quantum-mechanical prediction was observed, for any of various 
source-scatterer distances. 

6.4. Proton-proton scattering experiment by Lamehi-Rachti and Mitt@ 

The only test of the predictions in Bell’s theorem which has been performed so 
far not using photons is that of Lamehi-Rachti and Mittig (1976). They measured the 
spin correlations in proton pairs prepared by low-energy S-wave scattering. The 
scattering geometry is shown in figure 9. Protons from the Saclay tandem accelerator 
were scattered by a target containing hydrogen. The incident and recoil protons each 
entered analysers at 0lsb=45’ (OCm=9O0). The protons were scattered by a carbon 
foil, and detected at positions labelled L1 or RI, and L2 or R2 in the figure. Coinci- 
dences were sought between detectors on opposite arms, as they varied the azimuthal 
angle of the detector pair of one arm. 



1918 J F Clauser and A Shimony 

Detec tor  RI 

Proton-proton scattering geometry for the experiment by Lamehi-Rachti 
Mittig (after Lamehi-Rachti and Mittig 1976). 

Figure 9. and 

Auxiliary assumptions similar to those required for the positronium experiments 
allow them to compare the data with the predictions for local realistic theories. It 
should be noted that their geometry requires an additional assumption not necessary 
for the positronium experiments. Since the analysers are only sensitive to the trans- 
verse components of the spin, and since &, = 90°, the correlation is of the form : 

E ( a ,  b) = C cos a cos b 

and cannot violate inequalities (3.12) or (3.19) no matter what value C< 1 has. They 
thus assume that the quantum-mechanically predicted rotational invariance of the 
§-wave scattering (supposing negligible triplet contribution) allows them to decompose 
the correlation into a rotationally invariant part (singlet) and a non-rotationally 
invariant part (triplet). They then extrapolate the results back to a form which 
violates Bell’s inequalities, and rely upon other experimental evidence to set an upper 
limit to the triplet scattering contribution. An arrangement in which one of the 
protons is electrostatically deflected through 90°, or magnetically precessed through 
90°, would have eliminated the need for this last assumption. 

They obtain good agreement with the quantum-mechanical predictions. If one 
accepts their assumptions, then Bell’s inequalities are violated. However, even more 
reliance on quantum mechanics is needed than for the positronium experiments, and 
the criticisms of those experiments apply here more acutely. 

7. Evaluation of the experimental results and prospects for future experiments 

7.1. Two problems 

There are two very different problems involved in evaluating the experiments so 
far performed for testing the predictions in Bell’s theorem. The first is to determine 
the significance of the anomalous results of Holt and Pipkin and Faraci et al. The 
second is to determine what possibilities remain open if only the experiments which 
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favour quantum mechanics are accepted as veridical, and the anomalous results are 
attributed to spurious effects. In  this section we discuss both of these problems. 

7.1 . I .  Signijicance of the experimental discrepancies. The probability is extremely high, 
in our opinion, that the results contradicting the predictions by quantum mechanics 
were due to systematic errors. This opinion is not based on a conservative acknow- 
ledgment of the great success of quantum mechanics in the atomic domain. Rather, it 
is based upon the consideration that quantum mechanics predicts strong correlations, 
whereas Bell’s theorem sets a limit upon such correlations, Virtually any conceivable 
systematic error will wash out a strong correlation so as to produce results in accord- 
ance with Bell’s theorem, rather than speciously strengthen a weak correlation. We 
also note that the predictions by quantum mechanics are quantitatively precise. 
Therefore, in order to maintain that a local realistic theory governs nature, one must 
invoke experimental errors not only to explain a violation of the inequalities in seven 
out of nine experiments, but also to explain a very close quantitative agreement with 
the quantum-mechanical predictions in these seven. I n  view of the delicacy of these 
experiments we are not surprised that two anomalous results were obtained among 
nine. Experience with the experimental techniques and an awareness of the probable 
systematic errors, one expects, will lead to greater uniformity of results in later 
repetitions of the experiments. The results of the more recent experiments already 
indicate this to be so. 

7.1.2. Loop.holes with auxiliary assumptions. The assumptions for cascade-photon 
experiments are criticised in 95.4 and those for the positronium and the proton- 
proton scattering experiments in 596.2 and 6.4. The opinion is advanced that those for 
the former are considerably weaker than those for the latter; hence, the cascade- 
photon experiments are to be preferred. Evidently, none of these assumptions can be 
directly tested, and thus neither argument is at present fully conclusive. 

On the other hand, an indirect test of the assumptions of CH and CHSH may 
become possible. The  counter-example for the cascade-photon experiments (in 
contrast to that for the positronium and the proton-proton scattering experiments) 
exploits minor technological imperfections in the apparatus. Indeed, improvements in 
the polariser efficiencies and/or the photomultiplier quantum efficiencies can make this 
counter-example obsolete. There is, to our knowledge, nothing fundamentally restrict- 
ing significant improvements in either of these. 

The  cascade-photon experiments performed so far were all done on a very small 
budget (in comparison with modern large-scale experimentation). They were 
designed simply for testing inequality (5.2), and the various arrangements were suffi- 
cient to that end. Now suppose that a theorem (a strengthening of the one conjectured 
in 95.4) can be proved that the model of CH is essentially the only local hidden-variables 
model which reproduces quantum-mechanical data in the cascade- photon experiments. 
Since only a modest improvement in some of these parameters is sufficient to rule out 
this counter-example, the added expense of a significantly improved apparatus, in our 
opinion, would be justified. 

7.2. Experiments without auxiliary assumptions about detector efficiencies 

Even though the experimental results concerning local realistic theories appear 
highly convincing, it is still desirable to have an experiment for which auxiliary 
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assumptions are not required. It was shown in 54 that the requirements for such a 
scheme are demanding. Experiments using photons for this purpose do not appear to 
be feasible in the foreseeable future, since there seems to be no way of resolving the 
dilemma that highly efficient polarisation analysers can be achieved only for low- 
energy photons, while highly efficient detectors can be made only for high-energy 
photons. Furthermore, the two-body decay requirement is problematic with low- 
energy photons. Charged particles are evidently unusable, since an elegant argument 
by Bohr (see Mott and Massey 1965) indicates that magnetic state selection of their 
spin components violates the uncertainty principle. Hence, most schemes under 
consideration involve using either neutral particles and/or discrete states other than 
those associated with spin components. For example, Bell (1971) and Clauser et a1 
(see Fehrs 1973) were inspired by a paper of Inglis (1961) to consider the charge- 
conjugation correlations shown in the decay of neutral kaon pairs produced by proton- 
antiproton annihilation. It was concluded that the exponentially decaying envelope 
of the correlations precludes the observation of a direct violation of Bell’s inequalities 
in this system. 

There is hope that the requirements for efficient analysis and detection can be 
achieved by observing the dissociation fragments of a metastable molecule, with a 
pair of Stern-Gerlach magnets as analysers. The latter have virtually lOOyo trans- 
mission, and proper design of the magnetic fields can minimise spurious spin-flips 
(Majorana transitions) during propagation of the decay fragments. Alkali metal and 
halogen atoms, if used as the decay fragments, can be detected individually by 
ionisation or electron attachment at a hot surface with nearly 1OOyo efficiency. The  
parameters a and b can be taken to be the amplitudes of suitable resonant radio- 
frequency fields, applied in such a way as to coherently rotate the particle spins. Such 
an experiment holds promise of testing local realistic theories without any auxiliary 
assumptions, and with no loopholes other than the possibility of communication 
between the analysers (see 57.3). 

7.3. Preventing communication between the analysers 

Both the special and general theories of relativity preclude the existence of action- 
at-a-distance. This fact is, of course, the primary motivation for the various locality 
postulates considered above. However, in all of the experiments described so far, 
action-at-a-distance in the relativistic sense is not precluded, since the analysers are 
always kept at fixed orientations for periods of several seconds. Thus, there is ample 
time for information about the orientation of one analyser to be transmitted by some 
unknown mechanism (consistent with relativity theory) to the other apparatus (and/or 
other particle) thereby influencing its results. It is thus conceivable that such a mech- 
anism is instrumental in producing quantum-mechanical coincidence counting rates 
in the above experiments. T o  test this possibility requires an experiment in which the 
parameters a and b are adjusted with great rapidity while the correlated particles are 
in flight. If the event consisting of the adjustment of the parameter a of the first 
analyser is wholly space-like separated from the detection event of particle 2, and 
similarly concerning adjustment of parameter b and the detection of particle 1, then 
no signal with subluminal speed can convey information about the orientation of one 
analyser to the other apparatus in time to affect the probability of detecting the 
respective particles. In  other words, if the parameters a and b are adjusted with suffi- 
cient rapidity, then the non-occurrence of action-at-a-distance implies locality. For 
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photons the required rapid adjustment of the analyser orientations can be accomplished, 
for example, by using modern electro-optical devices such as high-speed Pockell’s 
cells. Aspect (1976) proposed the use of acousto-optical devices for basically the 
same purpose. 

However, even with such devices it is impossible to block the loophole completely. 
Since the backward light cones of the detection and adjustment events overlap, it may 
be claimed that events in the overlap region are responsible for determining the 
choices of the parameters a and b as well as the observed results. I n  this way the 
quantum-mechanical coincidence counting rates can still be accounted for without 
any direct causal connection between opposite sides of the experiment, and hence 
without introducing action-at-a-distance. Such an argument, however, seems un- 
acceptable on methodological grounds, for it could be used to justify an ad hoc dis- 
missal of any disagreeable data in almost any conceivable scientific experiment. 

7.4. Conclusion 

Although further experimental investigations of the family of theories governed 
by Bell’s theorem are desirable, we are tentatively convinced that no theory of this 
kind can correctly describe the physical world, Nonetheless, we find this conclusion 
disturbing, since the philosophical point of view which most working scientists have 
found natural, at least until quite recently, requires a local realistic theory. Because 
of the evidence in favour of quantum mechanics from the experiments based upon 
Bell’s theorem, we are forced either to abandon the strong version of EPR’s criterion 
of reality-which is tantamount to abandoning a realistic view of the physical world 
(perhaps an unheard tree falling in the forest makes no sound after all)-or else to 
accept some kind of action-at-a-distance. Either option is radical, and a comprehen- 
sive study of their philosophical consequences remains to be made. 

Appendix 1. Criticism of EPR argument by Bohr, Furry and Schrodinger 

The argument of EPR is powerful, since their conclusion surely follows from their 
plausible premises. Most of the community of physicists rejected EPR’s conclusion, 
however, because of a reply by Bohr (1935), which essentially consisted of a subtle 
analysis of their premise (ii). His argument is that when the phrase ‘without in any 
way disturbing the system’ is properly understood it is incorrect to say that system 2 
is not disturbed by the experimentalist’s option to measure a rather than a’ on system 1. 

‘Of course there is, in a case like that just considered, no question of a mechanical 
disturbance of the system under investigation during the last critical stage of the 
measuring procedure. But even at this stage there is essentially the question of an 
influence on the very conditions which dejine the possible types of predictions regarding 
the future behaviour of the system. Since these conditions constitute an inherent 
element of the description of any phenomenon to which the term “physical reality’’ 
can be properly attached, we see that the argumentation of the mentioned authors does 
not justify their conclusion that quantum-mechanical description is essentially 
incomplete.’ 

It is beyond the scope of the present review to analyse Bohr’s claim that the term 
‘reality’ can be used unambiguously in microphysics only when the experimental 
arrangement is specified. We are not convinced that Bohr ever succeeded in giving a 
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coherent statement of his philosophical position (see, for example, Shimony 1971, 
Stein 1972, Hooker 1972). We must admit, however, in consideration of the experi- 
mental evidence presented in this review against EPR’s conclusion, that Bohr’s 
position remains as one of the few feasible options concerning the foundations of 
quantum mechanics. 

An early important reaction to the argument by EPR was to question premise (i), 
Furry (1936) and Schrodinger (1935) independently considered the possibility that, 
after systems 1 and 2 become spatially separated and cease effectively to interact, their 
joint wavefunction no longer has the form (2.1)’ but rather becomes a mixture of 
simple product states, each having the form: 

Y8=Ufj*(l)@Usq2). (Al. 1) 

For each element of the mixture, both 1 and 2 are then in definite quantum states. 
This possibility is sometimes called ‘Furry’s hypothesis’, but that nomenclature is 
inappropriate. What Furry did was to show that for any choice of u;(l) and U,@), 
there exist in principle pairs of observables, M of 1 and S of 2, such that the statistical 
predictions for joint measurements of M and S based upon mixtures of the Yfi  are 
different from those based upon equation (2.1). Since Furry believed quantum 
mechanics to be correct, he concluded that a state like that of equation (2.1) does not 
automatically evolve into a mixture of the Yfi when 1 and 2 separate from each other 
(see the conclusion of 54 of his paper). It is more appropriate to call this scheme 
‘Schrodinger’s hypothesis’, since he explicitly stated that it may be true. Strong 
evidence against this hypothesis was presented in 1957 by Bohm and Aharonov (see 
$6.1). More recent experimental evidence confirming their conclusions has been 
discussed by Kasday (1971) and Clauser (1972, 1977). It is noteworthy that this 
hypothesis is such a natural one that many physicists apparently believe it to be a 
resolution of the EPR ‘paradox’ without recognising the theoretical and experimental 
evidence against it. 

Appendix 2. Hidden-variables theories 

A theory which asserts that the quantum-mechanical description of a physical 
system is incomplete and requires supplementation in order to specify completely the 
state of the system is commonly called a hidden-variables theory?. Those properties 
of the system which are proposed as supplements to the quantum-mechanical des- 
cription are commonly called hidden variables or sometimes hidden parameters. The 
history of hidden-variables theories is quite intricate, because the various proponents 
and opponents have made different assumptions about the conditions of adequacy 
which a hidden-variables theory should satisfy. We shall review here only as much of 
this history as is needed to provide the background for Bell’s theorem. Other reviews 
of this subject (some including discussions of Bell’s theorem) may be found in Bell 
(1966)’ Capasso et a1 (1970), Belinfante (1973), Jammer (1974) and d’Espagnat (1976). 

In  1926-7 deBroglie wrote several papers proposing an interpretation of the wave- 
function very different from that of Bohr. He supposed that the wavefunction 

The literature is not always consistent on this point, and many authors have included a 
hypothesis of determinism in their definition of a hidden-variables theory. In this review 
hidden-variables theories for which determinism holds are referred to as deterministic hidden- 
variables theories. 
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associated with a particle is a physically real field propagating in physical space in 
accordance with the Schrodinger equation. He  also supposed that the particle always 
has a definite position and a definite momentum. Thus his interpretation was actually 
a hidden-variables theory. Finally, he assumed an intimate coupling between the 
particle and the field described by the function Y, so that the latter can be considered 
a ‘guiding wave’ or ‘pilot wave’ for the particle. This coupling then accounts for 
interference and diffraction phenomena. Several serious difficulties were found in 
deBroglie’s theory (see deBroglie 1960), especially concerning many-particle systems 
and the S-wave state of a particle. As a result, deBroglie set aside his investigations 
of this kind until he was re-encouraged by the work of Bohm in 1952. 

We shall not discuss in detail the various other models considered so far (see, for 
example, Madeliing 1926, deBroglie 1953, Bohm and Vigier 1954, Freistadt 1957, 
Andrade e Silva and Lochak 1969). Some of these models assume that in addition to 
the potential recognised in classical mechanics the particle is subject to a ‘quantum 
potential’ hVR/2mR,  where R is the amplitude of the wavefunction. Other models 
assume that the wavefunction describes an averaged or smoothed state of a fluid 
medium, subject to random fluctuations which are not taken into account by the wave- 
function, but which are nevertheless important for understanding the statistical 
behaviour of particles moving in the medium. For the most part, the advocates of 
these models do not claim that they are anything but tentative descriptions of the 
subquantum level of the physical world. Their significance lies in providing existence 
proofs that a theory can be deterministic in character, and nevertheless agree with 
many of the statistical predictions by quantum mechanics. We have found, in our 
discussion of Bell’s theorem in $3, that a theory can achieve complete agreement with 
quantum mechanics only if it is non-local. 

Leaving aside the locality problem, we may ask how is it possible that so many 
mathematically consistent hidden-variables theories have been devised when various 
theorems have claimed that the structure of the class of quantum-mechanical observ- 
ables precludes such theories? We now discuss two such theorems. 

A2.1. Von Neumann’s theorem 

The  most famous theorem of this type is due to von Neumann (1932). Let U be 
the class of observables, and suppose that every self-adjoint operator on a Hilbert 
space 2 of dimension greater than 1 represents a member of U (but it is not excluded 
that 0 has other members). A state is specified by defining an expectation value 
Exp(A) on every A E U, and it is assumed that Exp satisfies the following conditions. 

(i) Exp(l)= 1, where 1 is the observable which, by definition, always has the value 
unity. 

(ii) For each A E 8 and each real number r ,  Exp(rA)=rExp(A). 
(iii) If A is non-negative, then Exp(A) 2 0. 
(iv) If A, B, C, . . . , are arbitrary observables, then there is an observable 

A + B + C+ . . . (which does not depend upon the choice Exp) such that: 

Exp(A+B+C+ . . .)=Exp(A)+Exp(B)+Exp(C)+. . . . 
The theorem asserts that there exists a self-adjoint operator A on 2 such that 
Exp(A2) #[Exp(A)]2, i.e. the state defined by Exp is not dispersion-free over the 
quantum-mechanical observables. 

The intuitive meaning of the conclusion of von Neumann’s theorem is that no state 
126 
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of the system-not even a state different from those recognised by quantum mechanics 
-can assign definite values simultaneously to all quantum-mechanical observables. 
Von Neumann’s theorem is mathematically correct, but its physical significance is 
doubtful. The  fact that it was often cited over three decades as a proof for the com- 
pleteness of quantum mechanics is a kind of historical aberration, and has wrought 
much confusion. Its crucial weakness is the supposition that any possible state of the 
system must satisfy condition (iv), even when A, B, C, . . . , are non-commuting 
operators and therefore represent observables which, according to quantum mech- 
anics, cannot be simultaneously measured. The  actual procedure for measuring A + B, 
when A and B do not commute, is different from the procedures for measuring A and 
B separately and does not presuppose any information about the value of either A or B. 
Consequently, the fact that the additivity of condition (iv) is satisfied by quantum- 
mechanical states is a peculiarity of quantum mechanics, and there is no reason to 
suppose that it is satisfied by non-quantum-mechanical states. This criticism of the 
physical significance of von Neumann’s theorem was made by Siege1 (1966) and Bell 
(1966). (In the two-dimensional Hilbert space of a spin-6 particle, Bell also constructed 
a family of dispersion-free states which are physically reasonable, even though they 
violate condition (iv). Pearle (1965) and Kochen and Specker (1967) independently 
constructed similar models.) There is evidence+ that Einstein was critical of condition 
(iv) as early as 1938 and therefore did not consider von Neumann’s theorem to be an 
obstacle to the ‘completion’ of quantum mechanics as demanded by the argument 
of EPR. An interesting survey by Jammer (1974, pp272-7) shows that others were 
critical of condition (iv), but not with complete clarity. 

A2.2. Gleason’s theorem 
In  1957 Gleason proved a theorem which is free from the unphysical condition (iv) 

of von Neumann’s theorem, and which has frequently been considered to be a decisive 
proof of the impossibility of any consistent hidden-variables theory. We shall not 
state the theorem itself but rather shall state a corollaryf which can be compared 
directly with von Neumann’s theorem. 

Let 0 be a class of observables containing all those represented by the self-adjoint 
operators on a Hilbert space of dimension greater than 2, and let Exp be a real-valued 
function over U, which satisfies the following conditions : 

1, 2, 3, as in von Neumann’s theorem. 
4’. If A, B,  C, , . , , are commuting self-adjoint operators on S, then 

Exp(A+B+C+. . .)=Exp(A)+Exp(B)+Exp(C)+. . . , 
Then Exp is not dispersion-free. 
This corollary is weaker than von Neumann’s theorem in one respect: it does not 

apply to a Hilbert space of dimension 2, and therefore it permits the models of Bell, 
Kochen and Specker, and Pearle. But it is much stronger in one crucial respect: it 
requires additivity only over commuting operators, for which the values of A + B + C+ 

.I. Professor P G Bergmann was an assistant to Einstein at that time, and he reported 
Einstein’s criticism to one of us. We regret that we have no evidence concerning Einstein’s 
opinion of von Neumann’s argument in 1935, when the paper of EPR was written. 

1 There are several direct proofs of essentially this corollary which do not rely upon the 
main theorem of Gleason: Bell (1966), Kochen and Specker (1967) and Belinfante (1973). 
The proof given by Jammer (1974, pp298-9) is the same as that of Bell, who is not credited. 
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, . . can in principle be determined by summing the results of simultaneous measure- 
ments of A, B, C, . . . ,. 

The conditions for this corollary are physically plausible, and its conclusion seems 
to be strong enough to preclude all non-trivial hidden-variables theories (i.e. all which 
apply to a system which is quantum-mechanically represented by a Hilbert space of 
dimension greater than 2). However, Bell (1966) pointed out the possibility of a 
family of non-trivial hidden-variables theories which do not satisfy all the conditions 
of the corollary and therefore are not bound by its conclusion. Suppose A, B and C 
are self-adjoint operators such that A commutes with both B and C, but B and C 
do not commute with each other. Therefore A can in principle be measured simul- 
taneously with B, or it can be measured simultaneously with C, and different experi- 
mental arrangements are required for the two measurements. In  the corollary it was 
assumed that when the state of the system is fully specified, the function Exp(X) has 
a definite value for each observable X ,  however X i s  measured. ‘It was tacitly assumed 
that measurement of an observable must yield the same value independently of what 
other measurements may be made simultaneously’ (Bell 1966, p451). But there is no 
a priori reason that this assumption should be true. ‘The result of an observation 
may reasonably depend not only on the state of the system (including hidden variables) 
but also on the complete description of the apparatus’ (Bell 1966, p451). It is physic- 
ally reasonable, therefore, to consider hidden-variables theories in which the expecta- 
tion values have the form Exp(X; V) ,  where Q indicates the ‘context’ of the measure- 
ment of X ,  i.e. all the quantities measured simultaneously with X .  Gleason’s theorem 
and its corollary do not preclude the possibility that such a ‘contextual’ hidden- 
variables theory can be dispersion-free, so that the result of measuring any observable 
is precisely determined by the state of the system (including hidden variables) together 
with the ‘context’ of the measurement. 

Bell’s proposal of a new family of hidden-variables theories sheds light on models 
like the one given by Bohm in 1952. This model antedated Gleason’s work, but 
Bohm (1952, p187) defended it against von Neumann’s impossibility theorem in the 
following way : 

‘the so-called “observables” are . . , not properties belonging to the observed system 
alone, but instead potentialities whose precise development depends just as much on 
the observing apparatus as on the observed system. I n  fact, when we measure the 
momentum “observable”, the final result is determined by hidden parameters in the 
momentum-measuring device as well as by hidden parameters in the observed 
electron.’ 

This passage does not propose the consideration of contextual hidden-variables 
theories as explicitly as Bell does, but it can be construed retrospectively as implicitly 
agreeing with Bell. 

The next step in the history of hidden-variables theories was taken by Bell, once 
he was convinced that impossibility theorems like that of Gleason do not establish 
a priori the inconsistency of hidden-variables models. By taking these models 
seriously, he was free to examine whether they shared any physically unreasonable 
properties in spite of their mathematical consistency, and to inquire whether such 
properties are inevitable in any hidden-variables theory which agrees with the pre- 
dictions by quantum mechanics. I n  this way he was heuristically led to the study of 
locality. 
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