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Abstract 

A survey of more than thirty quantum mechanics and quantum field theory textbooks and review 

articles reveals two distinctly different schools of thought regarding what quantum mechanics is. 

Indeed, these books are found to promote two very different formulations of quantum mechanics. 

One is formulated in laboratory space, while the other is formulated in configuration space. Max 

Born (1933, 1935, 1969) appears to have been the founder and earliest promoter of the lab-

space formulation. His textbook also acknowledges the two different possible formulations and 

pronounces them to be equivalent. He does so via what is herein called Born’s argument-space 

ambiguity. His pronouncement is shown here to be false. The two formulations are, in fact, very 

different, and are herein shown to be incompatible. This article thus compares and contrasts these 

two formulations with each other, and with competing formulations from quantum field theory 

and with Bell-Clauser–Horne–Shimony Local Realism. Born’s ambiguity is found to be 

embedded in quantum field theory also. Textbooks that promote the laboratory-space 

formulation are definitely easier to understand and visualize, in that they attempt to provide a 

“clean story line” that appears to explain many experiments. Born found the lab-space 

formulation preferable, because it is less mathematically abstract. Unfortunately, a lab-space 

formulation, a.k.a. a space–time formulation, is found to suffer from several serious 

fatal deficiencies. Paramount among these is that it can only describe single particle systems and 

cannot describe entanglement. Moreover, there does not appear to be any rigorous method to 

allow it to be extended to N ≥ 2 particle systems, and thence to describe entanglement. Attempts 

in various books to do so are examined and found wanting. It is also noted that all charged 

particles in the world interact with each other, at least weakly, and are thus are always slightly 

entangled. Born’s associated important construct, his “conserved probability current” is also 

examined. It is noted here that it may be constructed only in lab space, although various 

textbooks erroneously claim otherwise. Finally, it is noted that the lab-space formulation of 

quantum mechanics is really a form of Bell-Clauser–Horne–Shimony Local Realism, whereupon 

any successful attempt at a generalization to cover N ≥ 2 particle systems will also violate 

experimental evidence that has been amassed against Local Realism. Alas, the conceptual model 

that lab-space formulations promote and use is found to be untenable. It is commonly, but 

incorrectly, suggested that a lab-space formulation is justified because it provides an 

approximation to a better theory, that is, to a formulation that is formulated in configuration 

space. That suggestion is unfounded. Unfortunately, the configuration-space formulation requires 
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a highly abstract mathematical formalism that is difficult to understand and that provides no 

conceptual model to allow its inner workings to be visualized. 



Chapter 3
Laboratory-Space
and Configuration-Space Formulations
of Quantum Mechanics, Versus
Bell–Clauser–Horne–Shimony Local
Realism, Versus Born’s Ambiguity

John F. Clauser

Introduction—What Quantum Mechanics is Not

A commonly asked question is “What is quantum mechanics?” Perhaps an easier
question to answer is “What is Quantum Mechanics Not?” One answer to the
first question that is commonly given is that “Quantum mechanics is a descrip-
tion of the world of the very small”. Given observation of quantized magnetic
flux, quantized vortices in liquid helium, and the Aharonov and Bohm effect, all
over square-centimeter-sized areas, and especially given observation of two-particle
quantum mechanical entanglement that has been observed to extend over distances
of 133 and >1500 km, that answer also seems rather difficult to buy. Another
answer that is commonly given is that “Quantum mechanics describes nature non-
deterministically”. Local Realismwas first formulated by Clauser and Horne (1974),
as an alternative theoretical framework to that of quantum mechanics. Like quantum
mechanics, Local Realism includes theories that allow non-deterministic evolution.
Quantum mechanics is thus hardly distinguished from Local Realism by that defini-
tion. Yet another answer is that quantum mechanics provides a description of nature
in terms of “waves of probability (causally) propagating in space–time.” That answer
also will be shown here also to be incorrect.

A survey of more than thirty quantum mechanics and quantum field theory text-
books and review articles reveals two distinctly different schools of thought of what
quantummechanics is. These books are found to promote three very different formu-
lations of quantum mechanics. One is quantum mechanics formulated in laboratory
space, the second is quantum mechanics formulated in configuration space, and the
third is quantum field theory, which is formulated in a mix of these of these spaces,
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but differently by different authors. It is the purpose of this paper to describe, char-
acterize, and contrast the configuration space and lab space formulations of quantum
mechanics and quantum field theory with each other and with Local Realism.

The first of these schools is the laboratory-space school of quantum mechanics,
or lab-space school, for short. In that school, Schrödinger’s equation is formulated
directly in lab space. Lab space is the ordinary three-dimensional space in which we
live. The lab-space school’s complex valued wave function � lab(rlab, t) propagates
causally as a wave in lab space. The real-valued probability density, |� lab(rlab, t)|2,
also propagates in lab space. It is described as propagating similarly to a classical
field, except that it is subject to a somewhat mysterious “statistical interpretation”,
which was invented by Max Born. Via the lab-space school of thought, one is led
to envision “waves of probability”. That “interpretation” portrays |� lab(rlab,t)|2 as a
spatially dependent “probability density for finding the particle” at the point, rlab,
that flows like a wavy fluid in space–time. Schiff (1955, p. 18) describes the waves
and fluid as being similar to sound waves. Messiah (1961, p. 223) notes that “In
the classical approximation, � describes a fluid of non-interacting particles …, the
density and current density of this fluid are at all times respectively equal to the
probability density P and the probability current density J of the quantum particle
at that point.” Schiff (1955, p. 344) discusses dividing up all of (lab) space into
cells and specifying the value of � lab at each cell. Schiff (1955, p. 348) says “This
application implies that we are treating Eq. (6.16) [Schrödinger’s equation in lab
space] as though it were a classical equation that describes the motion of some kind
of material fluid.”

Born asserts that this probability density may also be interpreted as the particle
number-density of a beam of particles traveling through lab space. He famously
showed that it may be used to demonstrate conservation of particle number in
Rutherford scattering of the beam. Under the lab-space formulation the wave func-
tion’s value (whatever it means) and the associated probability density’s value are
correspondingly defined at every space–time point, (rlab, t), within the laboratory.

The quantum mechanics textbooks by Born (1933, 1935, 1969), Schiff (1955),
Dicke and Wittke (1960), Merzbacher (1961, 1970), Eisberg (1961), Eisle (1964),
Feynman and Hibbs (1965), Feynman’s (1948) seminal review article, and French
and Taylor (1978) all formulate quantum mechanics in lab space. Curiously, none
of these books explicitly specifies or even calls notice to this important aspect of its
description.1 The wave-function’s argument-space choice can be taken from context
and from the supporting illustrations.2 Typicalwave and particlemotions are depicted

1 By exception Feynman and Hibbs (1965) say the book is based on a review article by Feynman
(1948), titled “A space–time approach to non-relativistic quantum mechanics.” Schiff’s (1955,
p. 348) second quantization of � lab(rlab,t) admits that it treats the single-particle Schrödinger’s
equation “as though it were a classical equation that describes the motion of some kind of material
fluid.”.
2 Authors that formulate quantum mechanics in configuration space almost always call the reader’s
attention to the argument space that is being used. On the other hand, authors that do not specify
configuration space, instead generally use a lab space formulation. Merzbacher (1961, 1970) only
introduces configuration space when he discusses quantum field theory (in his second edition), but
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in Figs. 3.1, 3.2, 3.3, 3.4, 3.5, 3.6 and 3.7 that are reproduced from these books. French
and Taylor (1978) further describe a large number of experiments whose results seem

Fig. 3.1 Lab-space matter waves propagating around a nucleus, reproduced from Born (1933,
1935, 1969, Fig. 18, p. 132)

Fig. 3.2 Lab-space matter waves propagating around a nucleus, reproduced from Merzbacher
(1961, 1970, Fig. 1.1, p. 6). Eisberg (1961, 1967, Figs. 6–7, p. 152) also shows a very similar figure

not until then (see also his quote in the section “Born’s Argument-Space Ambiguity”). His vague
lack of specificity is traced to Born’s argument-space ambiguity, discussed in the section “Born’s
Argument-Space Ambiguity”.
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Fig. 3.3 Young’s two-slit Gedankenexperiment, and photograph of wave motion in a ripple tank,
reproduced from French and Taylor (1978, Fig. 2.3, p. 90)

to demand a lab-space explanation for the evident wave-like properties. By using lab
space, themotion of fields and particles is readily visualized and understood.Abstract
mathematics with no clear conceptual connection to the physics is generally avoided.
Indeed, it was the stated intention by French and Taylor (see their preface) to use
a description that presents a “clean story line”. Schiff (1955) says, “we shall try to
make the theoretical development seem plausible rather than unique.”

Figures 3.1 and 3.2, are reproduced from Born (1933, 1935, 1969, Fig. 18, p. 132)
and from Merzbacher (1961, 1970, Fig. 1.1, p. 6), respectively. They depict the
motion of waves propagating in lab space around the nucleus of a hydrogen atom.
Eisberg (1961, Fig. 6–7, p. 152) also offers a very similar figure, following his
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Fig. 3.4 Particles and waves propagating in lab space in Young’s two-slit Gedankenexperiment,
reproduced from Dicke and Wittke (1960, Fig. 2.1, p. 21)

Fig. 3.5 Young’s two-slit Gedankenexperiment, reproduced from Feynman and Hibbs (1965,
Figs. 1-3, p. 5) showing propagation of � waves in lab space
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Fig. 3.6 Lab-space geometry used for calculating path integral solutions to theHelmholtz equation,
reproduced from Feynman and Hibbs (1965, Figs. 3–3, p. 48)

Fig. 3.7 Lab-space geometry used for calculating path integral summation solutions to the
Helmholtz equation via the Fresnel-Kirchoff diffraction formula from classical physical-optics
theory. It is reproduced from Born and Wolf (1959, 1987, Fig. 8.3), Principles of optics. It is for
comparison with Fig. 3.6

promotion of deBroglie’s pilot-waves lab-space formulation of quantummechanics3

(pp. 141–146). Figure 3.3 is reproduced from French and Taylor (1978, Fig. 2.3,

3 deBroglie’s pilot-waves formulation of quantum mechanics provided strong motivation for the
development of Bell’s Theorem and Local Realism. Unfortunately, it is soundly refuted by exper-
imental evidence against Local Realism. See the section “Bell–Clauser–Horne–Shimony Local
Realism”.
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p. 90). It depicts propagation in lab space of matter-waves through Young’s two-
slit Gedankenexperiment. It also compares this to a photograph of wave motion in
a laboratory ripple tank. Figure 3.4, taken from Dicke and Wittke (1960, Fig. 2.1,
p. 21), depicts motion of particles and waves propagating in lab space in Young’s
two-slit Gedankenexperiment. Figure 3.5, reproduced from Feynman and Hibbs
(1965, Fig. 1–3, p. 5) depicts wavemotion in lab space inYoung’s two-slitGedanken-
experiment. Figure 3.6, also taken from Feynman and Hibbs (1965, Fig. 3–3, p. 48),
shows the lab-space geometry used by them for calculating path integral solutions to
the time-independent Schrödinger’s equation, which is the same partial differential
equation as the Helmholtz equation. Figure 3.6 may then be directly compared with
Fig. 3.7, which is reproduced fromBorn andWolf’sPrinciples of Optics (1959, 1987,
Fig. 8.3). It shows the same lab-space geometry that they use for calculating path-
integral solutions to the Helmholtz equation via the Fresnel-Kirchoff diffraction
formula from classical physical-optics theory (in lab space and with no particles
evident).

The lab-space formulation is reviewed below in the section “The Lab-Space
Formulation of Quantum Mechanics”. The formulation in lab space of the
single particle Schrödinger’s equation is described in the section “Single particle
Schrödinger’s equation in lab space”. The section “Born’s Probability Density
and Conserved Probability Current Defined in Lab Space” describes the calcula-
tion of probabilities in lab space and Born’s conserved probability current that also
flows in lab space similarly to the flow of a fluid. This current was invented by Born
to explain particle flux conservation in Rutherford scattering. It is only capable of
being formulated in lab space, and is a concept that only makes sense in lab space.

The second school is the configuration-space school. It is described below
in the section “The Configuration-Space Formulation of Quantum Mechanics”.
Schrödinger’s equation is formulated using a highly abstract mathematical space.
It describes a very general quantum mechanical system. That space is called config-
uration space. Its complex valued wave function �config(q1,config, …, qk,config, s1,config,
…, sk,config; t) is very different from � lab(rlab, t). Rather than specifying the position
within the lab where the wave function is to be evaluated, the wave-function’s argu-
ments instead specify the various degrees of freedom of the described system. For
a system composed of N particles, the wave function, �config,N(r1,config,r2,config, …,
rN,config, t), has arguments that specify then N positions, r1,config − rN,config, of these N
particles. The arguments may be either continuously varying or discretely varying,
and may include non-classical degrees of freedom, like spin, s1,config, …, sk,config, and
isotopic spin.4 A discretely varying argument with M allowed values, in turn, may
be used as an index, so that �config may be considered to be a vector-valued func-
tion with M components. Quantum mechanics textbooks that promote this school
include the books by von Neumann (1932,1955), Landau and Lifshitz (1958, 1965),
Messiah (1961) and Bjorken and Drell (1964). Interestingly, configuration-space-
school textbook authors rarely acknowledge the existence of the lab-space formula-
tion of quantum mechanics, and vice versa. Noteworthy exceptions are Dicke and

4 See Bjorken and Drell (1964, p.222).
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Wittke (1960) and Merzbacher (1961). Their comparisons of these formulations are
described in the section “Born’s Argument-Space Ambiguity”.

There are also many configuration-space based quantum mechanics textbooks,
which may be classified as applied quantum mechanics textbooks.5 These books
primarily discuss N-particle systems, whereupon this later feature forces them to use
configuration space. Such books include the works by Pauling and Wilson (1935),
Bethe and Salpeter (1957), and Condon and Shortley (1964). This latter group does
not attempt to “explain” theN-particle Schrödinger’s equation. Instead, the formalism
is simply accepted as given and useful in calculating results that match experiment.

The configuration-space school is described in the section “The Configuration-S-
pace Formulation of QuantumMechanics”. There aremany additional configuration-
space schools of thought to be found in various quantum mechanics books than
are treated here in section “The Configuration-Space Formulation of Quantum
Mechanics”. Von Neumann’s Chap. 1 formulation, listed therein as “The Original
Formulations”, is followed in the section “The Configuration-Space Formulation
of Quantum Mechanics”, along with that by Messiah (1961). Other configuration-
space formulations that are not discussed, for example, include Heisenberg’s matrix
mechanics, outlinedverynicely, for example, byCondon andShortley (1964),Dirac’s
(1930, 1935, 1947) formulation of quantum mechanics in Hilbert space, and others.
Each formulation is proclaimed by its promoters to be mathematically consistent
with all of the others, and each is a progressively more mathematically abstract.
Correspondingly, each is progressively more difficult to visualize than the others. A
discussion of all of these other related formulations goes beyond the scope of the
present article.

Configuration space is defined in the section “Configuration Space”. The section
“Schrödinger’s Equation in Configuration Space” describes the configuration-space
N-particle and single-particle (N= 1) Schrödinger’s equations. Calculation of proba-
bilities using the configuration-space formulation is described in the section “Calcu-
lation of Probabilities Using the Configuration-Space Formulation”. Finally, the
possible factorization of theN-particle configuration-spacewave function that occurs
when the various particles are strictly non-interacting and statistically independent is
discussed in the section “Factorization of Schrödinger’s N-particle Configuration-S-
pace Wave Function”. Particles that do not interact and that have never interacted
with each other, in that special case, may be considered statistically independent. It
is noted in the section “Wave-Function Factorization or Not!”, however, that in the
more general case, particles are usually entangled, even when there is (presently) no
interaction between them. In general, they are not independent. It is also noted that
all charged particles in the world interact with each other, at least weakly, and are
thus are always slightly entangled, with that entanglement exponentially growing in
time, so that the special case never accurately applies.

5 This appellation is offered by Bethe and Salpeter (1957).



3 Laboratory-Space and Configuration-Space Formulations … 43

The section “Born’s Argument-Space Ambiguity” proceeds to examine some of
the various discrepancies between the lab-space and configuration-space formula-
tions of quantum theory. For example, one may note that the depictions in Figs. 3.1–
3.7 are of quantum mechanical matter-wave propagation and particle propagation in
lab space, i.e. propagation in the three-dimensional space in which we live. Unfortu-
nately, the diagrams inFig. 3.1 (fromBorn) andFig. 3.2 (fromMerzbacher), depicting
the motion of waves in lab space around the nucleus of a single-electron hydrogen
atom, are impossible to be drawn for a two-electron helium atom! (See the section
“Born’sAmbiguity’sMisuse by the Lab-Space Formulation School” for observations
and discussions of this fact by Dicke and Wittke (1960), Merzbacher (1961, 1970).
Woops! Lab space doesn’t get very far up the periodic table in describing the structure
of atoms, does it? That is because a lab-space wave function, � lab(rlab), is limited to
describing only a single-particle system. Also, the lack of any evident spatial depen-
dence by a two-particle configuration-spacewave function,�config,2(r1,config, r2,config),
or by its associated probability density |�config,2(r1,config, r2,config)|2, prohibits these
quantities from being considered as a valid description of a wave-like field propa-
gating in lab space for N > 1 electron atoms, as per Figs. 3.1 and 3.2, whereupon
� lab(rlab) does not and cannot describe waves propagating in lab space for helium.

The lack of ability for a lab-space wave function to describe N > 1 particle systems
becomes a fatal difficulty for the lab-space formulation, especially when entangle-
ment is required. Curiously, the importance of this observation seems heretofore to
have gone unnoticed. It is shown in the section “Born’s Argument-Space Ambiguity”
that it apparently stems from a somewhat hidden ambiguity introduced by Born. In
his textbook, he wrongfully pronounces the equivalence of configuration-space and
lab-space wave functions. It is shown in the section “Born’s Ambiguity’s Misuse by
the Lab-Space Formulation School” that there appears to be no rigorous method to
allow a lab-spacewave function and the associated lab-space formulation of quantum
mechanics to be extended to describe N ≥ 2 particle systems. Attempts by various
books to demonstrate a direct connection between � lab(rlab) and �config,2(r1,config,
r2,config) are examined in the section “Born’s Ambiguity’s Misuse by the Lab-Space
Formulation School” and are found wanting. Thus, the wave functions are not equiv-
alent, despite Born’s pronouncement. This lack of equivalence is herein calledBorn’s
argument-space ambiguity. Correspondingly, there is no rigorous method evident to
allowa lab-spacewave function, alongwith the lab-space formulation also to describe
entanglement! Born’s important construct, the “conserved probability current” is
examined in the section “Born’s Conserved Probability Current as Re-Interpreted
Using the Configuration-Space Formulation”, wherein it is shown that it may be
constructed only in lab space, and only makes sense in lab space. It thus may not
be used to describe a pair of particles in an entangled state, e.g. as a pair of coupled
currents.

Born’s ambiguity is produced by a sneaky slight-of-hand. The ambiguity mani-
fests itself by using the same ambiguous (multiply defined) symbol r to represent
two very different quantities, rlab and r1,config, with different meanings altogether of
their arguments. Then, two different equations (Schrödinger’s equation for N = 1
particle in lab space and in configuration space) that are formally the same in their
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appearance are produced and both are claimed to govern nature. Both equations use
the common ambiguous symbol r. Presto, since the equations formally appear to be
the same, the equations are claimed to be equivalent, when in reality, they are not.
The switch is done so seamlessly that no one is aware of the prestidigitation that has
passed.

Details of the switch are outlined below in the section “Born’sAmbiguity’sMisuse
by theLab-SpaceFormulationSchool”.Born is not alone in its use. Itwill then be seen
in the section “Born’s Argument-Space Ambiguity” that many of the quoted authors,
in addition to Born, appear to have been ambiguous in their choice of propagation
space. Messiah (1961) usually reminds the author when configuration space is being
used, (but not always). He fails to do so in his discussions of scattering and quantum
field theory. In hisChap. 6,Classical Approximation and theWKBmethod, he follows
exactly this prescribed prestidigitation in his §4, Classical Limit of the Schrödinger
Equation (pp. 222–228).

Born’s notational ambiguity is revealed (and avoided) in the present article by
simply and “inelegantly” displaying the different meanings of the symbols as they
are used. The equations introduced in the sections “The Lab-Space Formulation
of Quantum Mechanics” and “The Configuration-Space Formulation of Quantum
Mechanics” are all taken verbatim from the above-mentioned quantum mechanics
textbooks. However, they differ slightly and conspicuously in notation from those
in the textbooks by the addition here of “Lab” and “config” subscripts. These obse-
quiously conspicuous “misquotations” are meant as a necessary clarification of these
quotations. The subscripts are unceremoniously added to all symbols that describe
a spatial and/or spatially dependent variable or operator. (Sorry for the necessary
annoyance and loss of “elegance”.) The additions extend to important symbols that
are quoted from the various textbooks to indicate which space it is assumed that the
quoted author is using, given that there are usually at least two possibilities to choose.

In the present article, in order to highlight Born’s argument-space ambiguity, the
subscript “config” is added to any dynamical variable or operator defined in a general
configuration space, and the subscript “j, config” is added to a dynamical variable or
operator defined for the j-th particle in an N-particle configuration space. Sometimes,
where there still may be confusion (as in the section “Wave-Function Factorization
or Not!”), the subscripts “particle1”, “particle2”, etc. are used to specify the setting
of a specific particle’s number index to a dummy index’s value. Dependent variables
that depend upon such dynamical variables, and/or upon operators in an N particle
system, are given the subscript “config, N”. This notation is used to prevent confusion
of these variables with formally similar variables that are defined in lab space.

The sections “QuantumFieldTheory1—QuantizationofKnownClassical Fields”
through “Quantum Field Theory 2—Second Quantization of Wave-Functions”
examine quantum field theory. Standard quantum mechanics (via Born’s conserved
probability current) requires that the number of particles describedby it to be constant.
In nature, however, particles are created and annihilated by various processes, and
these processes are not part of standard quantum mechanics. Standard quantum
mechanics thus needs to be extended to account for a varying number of particles
and to calculate how that number changes with time. Additionally, Einstein (1917)
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demonstrated an important need for what he called “directional radiation bundles.”
These must exist as a new quantum mechanical component part of the electromag-
netic field in order for the second law of thermodynamics to hold. These particle-like
directional radiation bundles, now known as photons, are not present in the clas-
sical description of the electromagnetic field in terms of Maxwell’s equations. A
quantum mechanical modification thus needs to be added to the classical description
of the field. Quantum field theory was correspondingly developed to handle these
different evident requirements associated with photons, and with the creation and
annihilation of massive particles. The first of these two different modifications to
standard quantum mechanics is called Quantum Field Theory 1”. It describes the
quantization of known classical fields (light and sound) in the sections “Quantum
Field Theory 1—Quantization of Known Classical Fields” through “Some Obser-
vations Regarding Which School Is “Proper””. The second, described in the section
“Quantum Field Theory 2—Second Quantization of Wave-Functions”, is called
Quantum Field Theory 2. It describes the “second quantization” of matter-wave
fields.

Fermi’s (1932) formulation of the quantum theory of radiation is discussed in
the section “Quantum Theory of Radiation and Quantum Electrodynamics”. The
relation of its quantized electromagnetic field to Einstein’s (1917) need for direc-
tional radiation bundles is discussed in the section “Quantum Field Theory 1—
Quantization of Known Classical Fields”. It is noteworthy that Fermi (1932) tried to
show that his quantized electromagnetic field demonstrated a causal behavior in real
space–time. The section “von Neumann’s Collapse of the Entangled Two-Photon
Quantized Electromagnetic Field”, however, shows that this aim cannot be achieved,
because of the non-causal non-unitary evolution that it must undergo as required by
von Neumann’s collapse process. Said non-causal behavior is to be expected, and is
predicted by experimental tests of Local Realism.

A scrutiny of Fermi’s treatment reveals the existence of fields of two types. These
two types are sometimes confused with each other via Born’s ambiguity by others,
but not by Fermi. Indeed, they are the same two types identified in standard quantum
mechanics, i.e. they differ by their choice of argument space—lab space or configu-
ration space. Things get worse. In Quantum Field Theory 2, various authors attempt
to second quantize at least seven kinds of fields. It is thus observed in the section
“Quantum Field Theory 2—Second Quantization of Wave-Functions” that second
quantization of the matter-wave field evidently cannot proceed without a liberal use
of Born’s ambiguity.

Inspired by Bell’s (1964) paper6 and following the associated proposed experi-
mental testing of local hidden variable theories by Clauser et al. (1969), Clauser and
Horne (1974), added yet a fourth candidate school of thought for describing natural
phenomena. Clauser and Horne (CH) originally named their formulation “Objective
Local Theories”. Clauser and Shimony (1978) reviewed it and renamed it “Local
Realism”.

6 Bell (1964), in turn, was inspired by his reanalysis of Einstein, Podolsky, and Rosen (1935).
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Bell–Clauser–Horne–Shimony Local Realism is formulated in lab space and
provides experimental predictions that differ from those made by all of the above
schools of quantum mechanics. Importantly, that feature allows Local Realism to be
distinguished experimentally from those three schools of thought.

Local Realism’s most attractive heuristic feature is that it provides very general
lab space formulation for all theories of natural phenomena that attempt to describe
real stuff in a real space–time framework, consistently with special relativity. It’s
most disappointing but also important heuristic feature is that it is soundly refuted
by experiment. Local Realism describes tangible stuff, stuff that is present locally in
space–time, stuff that can be put in a box, and stuff that can be used for storing bits
of information. It thus provides a general framework for the space–time description
of this stuff. An important requirement for the description is that it does not allow
communication among any of the stuff to occur at super-luminal velocities, so as to
somehow influence the results of experiments. Thus, Local Realism is consistentwith
special relativity. As an extension of classical field theories, Local Realism further
allows non-deterministic evolution of the stuff that it describes, and has no required
or seemingly artificial or presumed limitations to the precision of measuring devices.

Local Realism carefully defines a class of theories that attempt to describe
“real stuff in real space–time”. By providing this definition along with its experi-
mental predictions, Local Realism provides heuristic value in showingwhat quantum
mechanics is not! Importantly, Local Realism provides experimental predictions that
must be obeyed by any theory that attempts to describe “real stuff in real space–time”.
Also importantly, the Clauser–Horne inequality’s predictions differ from those made
by quantum mechanics. Starting in 1972 with the first experiment by Freedman and
Clauser (1972), followed by the second one by Clauser (1976), and then followed by
a long list of confirming experimental refinements, Local Realism has been soundly
refuted by experiment. Clauser (2017) reviews a partial list of twenty experiments
that have been performed at many different laboratories around the world during the
period 1972 through 2013 to test Local Realism. All but one of these experiments
refute Local Realism’s predictions. The theories basic predictions along with acid
tests of its prohibition of internal super-luminal communication have all been now
tested experimentally. Thus, quantum mechanics does not describe real stuff in real
space–time.

Curiously, the lab space formulation of quantum mechanics bears uncanny and
disturbing similarities to Local Realism. The difficulties experienced by the lab-
space formulation are thus to be expected, given that the lab space formulation
attempts to describe Local Realism’s real stuff in real space–time. Indeed, the lab
space formulation of quantum mechanics actually qualifies as a theory of Local
Realism. It slickly avoids experimental refutation similarly to Local Realism’s refu-
tation, because it is limited to describing only single particle systems. Such systems,
in turn, cannot exhibit non-local entanglement.Correspondingly, the lab space formu-
lation of quantum mechanics is then incapable of making experimental predictions
that can be tested by these experiments. Nonetheless, that deficiency should hardly be
considered a salvation of the lab-space quantum mechanics formulation’s viability.

The article’s conclusions are presented in the final section.
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Laboratory Space and Classical Fields

In this section we define what we refer to as “lab space” and “classical fields”. While
these definitions may seem obvious, tedious, and perhaps even boring, it is important
to clarify them before proceeding, since they are frequently blurred7 by practitioners
of quantum theory and mathematical physics.

Laboratory space or lab space, for short, is the three-dimensional space in which
we live, and the space in which Euclidean geometry is understood. It is the space
used by geometrical vectors and by classical vector and scalar fields. Every point
within one’s laboratory has a unique position in what is called lab space. Said point
is depicted by the symbol rLab.

Geometric Vectors Are Defined in Lab Space

A classical geometrical vector (within in a classical vector field) is typically depicted
as an arrow. It is a quantity with both a magnitude and a direction, and is commonly
used to represent force and velocity. It is sometimes referred to as a “vector of
physics”. Its definition does not require the existence of a coordinate system, and
physical laws are often expressed in vector notation without reference to a coordinate
system (see Margenau and Murphy (1943, 1956, p. 139)). It is often quantified by
specifying its real scalar Cartesian components as projections on some set of spatial
axes. When a classical geometrical vector is specified by its components, doing so
thus requires a simultaneously defined coordinate system that has three real-valued
components (exactly equal in number to the number of dimensions of lab space). In
a classical vector field, a geometrical vector or “vector of physics” is anchored at
every point in lab space, its three components are all real valued.8

Given a unique arbitrarily chosen point in the lab that is called the origin, every
point in the lab may be located relative to the origin via the use of an appropriate
Cartesian coordinate system. Each point in the lab also may be located by using a
“position” vector, rLab, that extends from the origin to it. Given a set of lab coordi-
nates, every point in the laboratory thus has an associated vector position specified
by

rLab = êxxLab + êyyLab + êzzLab, (3.1)

where êx, êy, and êz are three orthogonal Cartesian unit basis vectors extending
from the origin. Note that lab space necessarily has three, and only three, spatial
dimensions. As an alternative to a Cartesian coordinate system, a variety of other 3D

7 Said blurring is commonly called “interpreting”.
8 The term “real” here means having no imaginary component.
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coordinate systems may be defined within said space without modifying in any way
the geometrical properties of the space, itself.

Classical Fields Are Defined in Lab Space

A classical field is typically represented as a mathematical function, f(rLab), of posi-
tion, rLab. The function assigns a unique value, f, (or values) to every point in the
lab, i.e. the function’s dependent variable, f, specifies the field’s value at the point,
rLab. Many different fields may exist simultaneously. The value(s), f, also may take
many forms—scalar, vector, tensor, set of scalars, set of vectors, or evenmore general
mathematical forms. That is, f may take any basic generalized-spaghetti form that
might be needed to specify the field’s property or properties. If needed, it may be an
n-tuple of numbers that are all defined simultaneously at the point, rLab. The func-
tion’s independent variable, or argument, is here represented by the dummy variable,
rLab. It specifies the position in the lab where the function’s value or values apply
Classical fields may be time varying, whereupon a second argument, t, is used to
specify the time at which the function’s assignment applies. In general, lab space is
required for the description of the mechanics of continua, such as fluids, when no
particles are evident or even present.

Classical Fields Are Used to Specify How Classical Stuff is
Distributed Throughout Lab Space

The assumption that nature consists of real stuff distributed throughout lab space is
the fundamental basis of both classical physics and Local Realism. Classical fields
are used by classical physics and Local Realism to describe how the properties of real
stuff are distributed throughout lab space. So-called “classical physics” (definitions
vary) then provides a theory (usually, but not necessarily deterministic) that is a
subset of Local Realism. Local Realism will be described in more detail in section
“Bell–Clauser–Horne–Shimony Local Realism”. It allows for a non-deterministic
evolution of stuff. As a preface to that section, it should be noted that all of the
expressions used by Local Realism qualify as “classical fields” and are functions of
rLab. The real-valued probability density, |� lab(rlab, t)|2, also qualifies as a classical
field defined in lab space.

Familiar examples of classical vector fields include the velocity field of a fluid,
v(rLab, t), and the electric fieldELab(rLab, t) from electromagnetic theory. The velocity
field’s vector may be decomposed with its associated Cartesian components defined
as

vLab = êxvx,Lab + êyvy,Lab + êzvz,Lab. (3.2)
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Given some quantity of the stuff that is described by a field whose value varies as
a function of position within the lab, there is an important differential vector operator
that operates on the quantity’s value (only) in lab space. It is the lab-space gradient
operator:

∇Lab = êx∂/∂xLab + êy∂/∂yLab + êz∂/∂zLab. (3.3)

It may be used to calculate the rate of change of a function’s value with respect
to spatial position within the lab. Important theorems of vector analysis (Gauss’s
theorem, Green’s theorem(s), and Stokes theorem, etc.) all apply rigorously to scalar
and vector fields that are defined in lab space. Waves in linear classical fields prop-
agate in lab space, typically governed by the classical wave equation. In such cases,
the time dependence of the equation can be factored out, and the result is the
time-independent linear Helmholtz equation.

Lab Space is not the Same as a General Vector Space

At this point in the discussion, it is worth commenting onwhat lab space is not. Unfor-
tunately, some authors have imprecisely adopted the use of the words “vector space”
and “vector” to describe abstract mathematical constructs in quantummechanics that
may or may not include “lab space” and “classical geometrical vector” in lab space.

A “geometrical vector” is sometimes confused with an “algebraic vector”. The
two types of vectors are sometimes treated as equivalent interchangeable entities.
They are not! Apostol (1961, V1, p. 252) discusses “another approach to vector
algebra called the abstract or axiomatic approach, …. Instead, vectors and vector
operations are thought of as undefined concepts of which we know nothing except
that they satisfy a certain set of axioms. Such an algebraic system, with appropriate
axioms is called a linear space or a linear vector space. …” An algebraic vector
(within a vector space) is commonly represented as an “ordered n-tuple” of numbers.
The number, n, of numbers in the n-tuple may be greater than three, even infinite,
and the numbers themselves may be complex.

Anordered n-tuple of numbers is not, in general, associatedwith a specific position
in lab space. It does not necessarily qualify as a geometrical vector, especially when
n is greater than three, and especially when the numbers themselves are complex.
For the purposes of the present discussion, a “vector space” is taken here to mean
a set of numbers (an algebraic vector) that somehow functionally depends on some
other set of numbers, and nothing more.

The lab-space gradient operator defined by (3.3), when operating on a lab-space
classical scalar field produces a lab-space vector field with a unique geometric
vector thereby defined at every point in lab space. On the other hand, an alge-
braic vector defined in configuration space, (in the section “The Configuration-S-
pace Formulation of QuantumMechanics”) is not a lab-space geometric vector. As a
preface to that section, it should be noted that the real-valued probability “density”,
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|�config,N(r1,config, r2,config,…, rN,config, t)|2 correspondingly does not qualify as a clas-
sical field. Indeed, it is also pointed out in that section that Messiah (1961, p. 164)
succinctly defines “The wave functions of wave mechanics are the square integrable
functions of configuration space.” It should also be stressed that the special case with
N = 1 does not change the space on which �config,Ndepends from configuration to
lab.

Bell–Clauser–Horne–Shimony Local Realism

The term “Local Realism” describes a large class of theories, first explicitly defined
by Clauser and Horne (CH) in 1974. Clauser and Horne named the class, “Objective
Local Theories”. Significant contributions were made to the theory by Bell and
Shimony. In response to Clauser and Horne (1974), Bell offered a different (unpub-
lished) version which he called “The Theory of Local Beables”. Local Realism was
refined and clarified jointly by Bell et al. (1976–1977), regarding methods used to
specify the apparatus parameters and differences between “Objective Local Theo-
ries” and “The Theory of Local Beables”. Local Realism theory was further refined
in the review article by Clauser and Shimony (1978), who gave the class of theories
the name Local Realism.

The Locality principle is based on special relativity. It asserts that nature does
not allow the propagation of information faster than light to thereby influence the
results of experiments. Without Locality, one must contend with paradoxical causal
loops, as are now popular in science fiction thrillers involving time travel. Upholding
Locality is effectively denying the possible reality of causal loops.

Realism is a philosophical view, according to which external reality is assumed
to exist and have definite properties, whether or not they are observed by someone.
Another way of describing what is meant by Realism is to say that it specifies that
nature consists of “objects”, i.e. of stuff that is distributed throughout space–timewith
“objective reality”. Realism assumes that stuff, i.e. objects, with spatial positions and
structure, exist and have inherent properties on their own. It does not require that
these properties fully determine the results of an experiment locally performedon said
stuff. Instead, in a possibly non-deterministic world, it simply allows the properties
of stuff (a discrete object, or objects, or continuum objects) to somehow influence
the probabilities of experiments being performed locally on it. There is also nothing
in this specification that prohibits an act of observation or measurement of an object
or property from influencing, perturbing and/or even destroying said properties of
the object or royally messing up the property.9 Realism thus assumes that an object’s
properties determine minimally the probabilities of the results of experiments locally

9 Whether or not there is a disturbance of a property (or properties) that is made during its measure-
ment certainly does not necessarily mean that there was not a well-defined property of the stuff
existing prior to ameasurement. Such a disturbance, if present, simply indicates a clumsymeasuring
apparatus or procedure. At worst, such a clumsy measurement only messes up the properties avail-
able for a subsequent measurement. Also, simply because no one at present can think of how to build
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performed on it. Realism, under the additional constraint of locality, become Local
Realism. Local Realism assumes that the results of said experiments do not depend
on other actions performed far away, especially when those actions are performed
outside of the light-cone of the local experiment.

Local Realism is the combination of the philosophy of realism with the principle
of locality. Local Realism describes “real stuff in real space–time”. Stuff, objects,
and their associated properties, as referred to here, are what John Bell called Local
Beables, and what Einstein Podolsky and Rosen (1935) called “elements of reality”.
The properties of an object constitute a description of the stuff that is “really there”
in nature, independently of our observation of it. When we perform a “measurement”
of these properties, we don’t really need to knowwhat we are actually doing, or what
we are reallymeasuring. The fundamental assumption underlying Local Realism that
what is “really there”, even if we don’t know exactly what it is, nonetheless somehow
influences what we observe, even if said influence is inherently stochastic and/or
perhaps irreproducible from one measurement to the next. Recall that Einstein et al.
(1935) attempted to define an object’s properties as something that one can measure,
but they further required that the measurement result be predictable with certainty.
However, givenBenFranklin’s observation that the only predictions that are certain in
life are for death and taxes, said definition becomesmeaningless, because it describes
nothing that can ever be present in reality. Local Realism’s definition is much looser
and requires no predictions with certainty.

Precisely how did Clauser and Horne (1974) define an object with such extreme
generality? For the purposes of Local Realism and its tests via Bell’s Theorem and the
Clauser–Horne (CH) inequality, a purely operational definition of an object suffices.
An object (or collection of objects) is stuff with properties that one can put inside a
“box”, wherein one can then perform measurements inside said box and get results
whose values are presumably influencedby the object’s properties.10 What is a “box”?
A box is defined as a closed Gaussian surface,11 inside of which one can perform said
measurements of said properties. Three dimensional (temporally shrinking)Gaussian
Surface “boxes” are shown in Fig. 3.8. For Local Realism, such a box becomes a
four-dimensional Gaussian surface consisting of the backward light cone (extending
to t = −∞) enveloping a three dimensional box, that contains the object(s) being
measured, at the time that they are being measured. Four dimensional Gaussian
Surface “boxes” are depicted in Fig. 3.9.

Familiar examples of “classical” objects that can be put into boxes are solar
systems, airplanes, shoes, trapped clouds of atoms, single trapped atoms, electrons,
y-polarized photons, a single bit of information, etc. All of these can be put into
a sufficiently large box and have their properties (e.g. color, mass, charge, etc.)

an improved measuring apparatus that will allow a super-observer to make such a measurement
also does not preclude the existence of specific properties characteristic of each point in space.
10 See especially, Clauser and Horne (1974, Footnotes 10–15).
11 Gauss showed that a “Gaussian surface” (sometimes called a closed surface) is one that divides
all of space into two disjoint volumes, wherein one of these volumes may be called the inside, and
the other the outside.
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Fig. 3.8 Snapshot of a pair of 3D (temporarily shrinking) Gaussian-surface boxes labeled
∑

A and∑
B. that envelop two separated apparatuses. Each apparatus is measuring a selected property, of an

object, giving the binary result, count (on) or no-count (off). The associated property is selected by
its associated parameter setting, a or b. The boxes are space-like separated. Signal sources in each
generate the apparatus parameter settings, randomly. In this example, they are generated via human
“free-will”, with both settings assumed to be independently randomly chosen and not influenced
by their communal past

measured. Or can they? Via Bell’s Theorem experiments, one may ask—are there
examples of objects that cannot be put inside such boxes12? If so, such objects cannot
be described byLocal Realism. Furthermore, if there are parts of nature that cannot be
described by Local Realism, then Local Realism must be discarded as a description
of all of nature. Sadly, (for Local Realism advocates) experiments now show that the
individual particles comprising a quantum-mechanically entangled pair of particles
are parts of nature that cannot be described by Local Realism.

Figure 3.8 shows a disjoint, space-like-separated pair of 3D Gaussian-surface
“boxes” labeled

∑
A and

∑
B.13 Each box surrounds a pair of objects, each being

measured respectively by a pair of measuring apparatuses. Figure 3.9 displays these
same two boxes evolving in 2D x-t space. The boxes

∑
A and

∑
B. are shrinking at

the speed of light as time progresses forward to their positions shown in Fig. 3.8.
Two 4D Gaussian-surface boxes, are thus each formed by the backward light cones
that envelope 3D boxes labeled

∑
A and

∑
B. The 4D boxes contain associated 4D

volumes, �A and �B. Figure 3.9 thus shows a (2D projection) space–time diagram
of the stuff in space–time, that is contained within these 4D volumes, and that can
influence the probability of a count or no-count at each apparatus.

12 The fact that the simplest possible object—a single bit of information—cannot be put into a
“box”, in turn gives rise to the field of quantum information.
13 Figure 3.8 was first presented by the author at the 1976 International”Ettore Majoranna” Confer-
ence in Erice, Sicily on “Experimental QuantumMechanics. The conference was organized by John
Bell, Bernard d’Espagnat, and Antonino Zichichi. With present-day jargon, the characters labeled
“Signal source and recorder” would now be named Bob and Alice.
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Fig. 3.9 Space–time diagram of stuff in lab space described by Local Realism. Two backward-
light-cone 4DGaussian-surfaces containing associated volumes,�A and�B, respectively, envelope
the 3D boxes,

∑
A and

∑
B, shown in Fig. 3.8. Objective state properties λ(rlab,t) are defined at

every space–time point (rlab,t). The probability of a count at apparatus A or B may depend only on
properties,λ(rlab,t), containedwithin the associated 4D volume�A or�B. An alternative parameter-
selection method is used here with respect to that used in Fig. 3.8. Apparatus parameter settings,
a and b, are now set by signals from events occurring outside of the overlap region of �A and
�B. A recent experiment performed by Kaiser and Zeilinger satisfies this condition by having the
choices for a and b set by light from two distant quasars (see Public Broadcasting System, (2018)
“Einstein’s Quantum Riddle”, Nova television documentary.)

Let us use the symbol, λ(rlab, t), to represent the complete set of properties at
any point in space–time, (rlab, t). It may have whatever level of complexity that is
necessary to do so. The properties are assumed to be randomly distributed with an
ensemble probability density ρ(λ(rlab, t)). Given the arrangement shown in Figs. 3.8
and 3.9 and the assumptions made by Local Realism, the properties λ(rlab, t) located
at a point (rlab, t) that is within �A may influence the probability of a count at
apparatus A. Define the incremental probability of a count at apparatus A when the
apparatus is configuredwith parameter setting,a, to be pA(a,λ(rlab, t)). This definition
holds, independently of what happens at apparatus B. The corresponding incremental
probability of a count at apparatus B with parameter setting, b, independently of
what happens at detector A, is defined to be pB(b, λ(rlab, t)), for properties, λ(rlab,
t), located at a point, (rlab, t), within �B. The integrated probability, pA(a), of a count
at apparatus A, irrespective of what happens at apparatus B, that is due the influence
of all properties distributed throughout the 4D volume �A is then given by

pA(a) = ∫
�A

drlab dt pA(a, λ(rlab, t))ρ(λ(rlab, t), rlab), (3.4)
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and the probability of a count, pB(b), at apparatus B, that is due the influence of all
properties distributed throughout the 4D volume �B is given by

pB(b) = ∫
�B

drlab dt pB(b, λ(rlab, t)) ρ(λ(rlab, t), rlab). (3.5)

Except for correlations caused by common causes in the overlap region, the results
at A and B are otherwise independent. The parameter settings a and b are also
chosen independently. Locality then requires that the incremental joint probability
of a “coincident” count at both detectors A and B, caused by properties located at a
point, λ(rlab, t), is then given by

pAB(a,b, λ(rlab, t)) = pA(a, λ(rlab, t)) pB(b, λ(rlab, t)). (3.6)

The factored form, (3.6), is the key ingredient for the CH argument to proceed.
The integrated joint probability, pAB(a, b), of a “coincident” count at detectors A
and B for properties located at a space–time point anywhere that might influence the
joint result is then

pAB(a,b) = ∫
�A U �B

drlab dt pAB(a,b, λ(rlab, t)) ρ(λ(rlab, t), rlab)

= ∫
�A U �B

drlab dt pA(a, λ(rlab, t)) pB(b, λ(rlab, t)) ρ(λ(rlab, t), rlab).

(3.7)

Equations (3.5)–(3.7) were used by Clauser and Horne (1974), who found them
sufficient to derive the CH inequality as an experimental prediction by all theories in
the class defined as Local Realism for the results of an experiment shown with the
configuration of Figs. 3.8 and 3.9. The CH inequality is

−1 ≤ pAB(a,b) − pAB
(
a,b′) + pAB

(
a′,b

) + pAB
(
a′,b′)

− pA
(
a′) − pB(b) ≤ 0. (3.8)

An earlier version of (3.8), the CHSH inequality, was first given by Clauser et al.
(1969), for a more restrictive deterministic class of theories. The CH inequality,
(3.8) reduces to the CHSH inequality14 when various modifications are made for
the experimental arrangement (the inclusion of source heralding, or Clauser and
Horne’s no-enhancement assumption) so that the CHSH inequality can also be used
for experimental tests of Local Realism.

By carefully defining what “Local Realism” is, Clauser and Horne provide
heuristic value in showing what quantum mechanics is not. Local Realism provides
experimental predictions that must be obeyed by any theory that attempts to describe
“real stuff in real space–time”. Importantly, the CH prediction (3.8) differs from

14 Both the CH and CHSH inequalities are examples of what Clauser andHorne (1974) named “Bell
Inequalities”. See Clauser (2017) for a review of the various testable and tested Bell inequalities.
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that made by quantum mechanics. Experimental tests for either the CHSH or the
CH inequality are difficult, and it has taken many years for technology to advance
to the point where loophole-free direct tests of (3.8) can be performed. In an effort
to allow testing with 1970’s technology, Clauser and Horne (1974) provided a very
plausible auxiliary assumption (their no-enhancement assumption), which allowed
the technology of that era to provide an experimental test. Clauser (2017) provides
a review of this and other assumptions that have been made to allow experimental
testing of Local Realism over the years, as technology for performing such tests has
improved.

Starting in 1972 with the first experiment by Freedman and Clauser (1972),
followed by the second one by Clauser (1976), and then followed by a long list of
confirming experimental refinements continuing to the present, Local Realism has
been finally conclusively refuted by experiment. Clauser (2017) provides a partial
list of twenty experiments that have been performed at different laboratories around
the world during the period 1972 through 2013 to test Local Realism. All but one of
these experiments refute Local Realism’s predictions. The theory’s basic predictions
along with “acid tests” of its prohibition of internal super-luminal communication
have all been now tested experimentally. Clauser and Shimony’s (1978) conclusion
regarding Local Realism still stands—“Consequently, it can now be asserted with
high confidence that either the thesis of Realism or that of locality (or perhaps even
both) must be abandoned. Additionally, any theory that falls within the scope of its
underlying assumptions must also be abandoned.”

As we shall demonstrate below, the lab-space formulation of quantum must
similarly be abandoned.

The Lab-Space Formulation of Quantum Mechanics

Textbooks that promote the lab-space formulation of quantum mechanics generally
employ conceptual models that are motivated and justified by the concepts depicted
by Figs. 3.1–3.7. Once Schrödinger’s equation has been formulated in lab space
using this conceptual model, these books then immediately proceed to use it, lab
space, and the conceptual model to solve a long list of single-particle problems. The
problems typically include free-particle motion, motion of a single particle confined
in a 1D and 3D square well, motion of a single particle at a potential step and through
a potential barrier, finding the energy levels of a hydrogen atom, quantized orbital
angular momentum, the scattering of a single particle by a central potential, and
semi-classical radiation theory.

Max Born appears to have been a father of the lab-space formulation of quantum
mechanics. It is described in detail in his seminal book, Moderne Physik, Born
(1933, 1935, 1969). Subsequently authored books by Schiff (1955), Dicke andWittke
(1960), Eisberg (1961, 1967), Merzbacher (1961, 1970), Feynman (1948), Feynman
andHibbs (1965), Eisle (1964), and French and Taylor (1978), all formulate quantum
mechanics in lab space, whether they mention this fact or not.
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A basic tenant of the lab-space formulation is that Schrödinger’s wave function is
treated as a “classical field” that is defined and formulated in lab space, as per section
“Laboratory Space and Classical Fields”. Textbooks that use a lab-space formulation
treat Schrödinger’s wave function, �Lab(rLab, t), as a field that propagates in lab
space, as depicted in Figs. 3.1–3.7. Correspondingly, the real-valued probability
density, |� lab(rlab, t)|2, also propagates in lab space as a classical field, like one found
in electrodynamics or fluid mechanics, except that it is subject to the somewhat
mysterious “statistical interpretation”. That “interpretation” is universally attributed
to Max Born.

Born, in his textbook (see quote from his book in the section “Born’s Argumen-
t-Space Ambiguity”), describes the “wave amplitude”, � lab(rlab, t), as an “ordinary
physical magnitude”. Born’s modification of the traditional classical field concept
occurs with his invention of the “statistical interpretation”. He uses |� lab(rlab, t)|2

to describe, not only probability density in lab space, but also uses it to describe
particle density as a function of lab-space position, wherein particles move at the
group velocity of a wave that propagates in lab space. (See the section “Born’s Argu-
ment-Space Ambiguity” for a detailed discussion of Born’s description.) Thus, he
uses it to describe the “density” of stuff in lab space, although the term “particle
density” is obviously difficult to define for a single-particle theory. His metaphoric
usage is perhaps excused by his also calling it a “probability density”.

Given the definition of lab space from the section “Laboratory Space
and Classical Fields”, and the definition of Local Realism from the section
“Bell–Clauser–Horne–Shimony Local Realism”, then Re[� lab(rlab, t)], Im[� lab(rlab,
t)], and |� lab(rlab)|2 all qualify as classical scalar fields. Unfortunately, the lab-space
formalism of quantum mechanics only applies to single-particle systems! It will be
shown in the section “Born’s Argument-Space Ambiguity” that there is no rigorous
method to allow lab-space wave functions, along with a lab-space formulation of
quantum mechanics, to be extended to describe N ≥ 2 particle systems. This impos-
sibility might be expected, since Local Realism’s formulation and Bell’s Theorem
forbids it. Correspondingly, experiments that refute Local Realism also refute a lab
space formulation of quantum mechanics.

Single Particle Schrödinger’s Equation in Lab Space

Authors formulating Schrödinger’s equation in lab space typically start by “search-
ing” for a partial differential equation that is, itself, formulated in lab space. Schiff
(1955, pp. 20–22), for example, formulates Schrödinger’s equation as a direct analogy
to sound waves. Merzbacher (1961, 1970, pp. 34–42), Eisberg (1961, 1967, pp. 166–
170, Dicke and Wittke (1960, pp. 23–36), and others rely on conceptual aids like
Figs. 3.1–3.7. The lab-space formulation generally starts with a requirement that its
solution for a free particle be a plane wave, as per

�Lab(rLab, t) = exp (i(k · rLab − ωt)) , (3.9)
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with its propagation vector is given by

|k| ≡ 2π / λdeBroglie,

and where the fundamental relations of quantum theory, deBroglie’s and Einsteins’s
relations,

λdeBroglie ≡ h/|p|, E = �ω,p = �k. (3.10)

also apply. Equation (3.9) then becomes

�Lab(rLab, t) = exp (i(p · rLab/� − E t/�)). (3.11)

The technique employed to obtain the desired partial differential equation is to use
a somewhat mysterious but now standard “operator substitutions trick”15 for these
variables, as per

E = � ω = p2/ 2m + V → −i� ∂/∂t,

p = �k → −i�∇Lab,

|p|2 → −�
2∇2

Lab

The equation’s component parts are then combined using the indicated operator-
substitutions trick to yield the desired partial differential equation—Schrödinger’s
time dependent equation in lab space,

[ − (
�
2/2m

)∇2
Lab + V] �Lab(rLab, t) = i� ∂/∂t �Lab(rLab, t). (3.12)

Additionally, the so-called Hamiltonian operator is defined as

HLab ≡ −�
2∇2

Lab + V(rLab) , (3.13)

giving a more compact form of Schrödinger’s time dependent equation in lab space,

HLab�Lab(rLab, t) = i�∂/∂t �Lab(rLab, t). (3.14)

Stationary state solutions, �Lab(rLab), are readily found by factoring out the time
dependence using

�Lab(rLab, t) = exp (i(p · rLab/�− Et/�)) = �Lab(rLab) exp (−iEt/�)), (3.15)

15 Thismysterious trick is referred to byMessiah (1961, p. 885) as the “Schrödinger correspondence
rule”.
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whereupon Schrödinger’s time-independent equation in lab space is given by

HLab�Lab(rLab, t) = E�Lab(rLab, t). (3.16)

Equation (3.15) will be recognized as the time-independent Helmholtz equation
in lab space, familiar from electromagnetic theory. A solution to (3.15) is then an
eigenfunction of the operator HLab, with the eigenvalue E.

Born’s Probability Density and Conserved Probability Current
Defined in Lab Space

Born’s statistical interpretation starts with his definition of the scalar field,

P(rlab, t) ≡ |�lab(rlab, t)|2, (3.17)

as the probability density in lab space. A common assertion by Born and echoed by
all quantum mechanics books is that is that P(rlab, t) describes a “wave of proba-
bility”. Under the lab space formulation and Born’s “statistical interpretation”, the
probability for detecting the single particle’s presence with a detector positioned at
rlab = rdet, within the differential volume element,

d3rlab ≡ dxLabdyLabdzLab,

between the times, tdet and tdet + dt, is given by

P(rlab = rdet, t = tdet) ≡ |�lab(rlab = rdet, t = tdet)|2. (3.18)

Given Born’s statistical interpretation, P(rlab, t) also describes the local
particle/probability density in lab-space position. The probability density’s normal-
ization is found by integrating the dummy variable, rlab, over all space, as
per

1 = ∫ d3rlab P(rlab, t). (3.19)

For a wave function that is not square integrable, like that of a plane wave, a
finite normalization volume alternatively may be used. Equation (3.19) specifies that
the probability of finding the particle somewhere within the lab-space normalization
volume is always unity.

In order to link his probability density to particle density, Born further assumes that
the particle moves within the lab with a probability flux that he calls a “probability
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current”. It is described by a classical vector field,16 S(rlab, t). It is defined such
that the particle and/or probability flux impinging on a detector’s surface is given
by

∫
S · dA, where dA is the detector-surface normal’s differential area, and where

the integral extends across the detector’s surface. Given the normalization (3.19),
the appropriate flux-density vector is then just the single-particle’s velocity vector17

defined locally at the point, rlab, as

S(rlab, t) ≡ Re[�∗
lab(rlab, t) (p/m)�lab(rlab, t)

= Re[�∗
lab(rlab, t) (−i�∇Lab/m)�lab(rlab, t)]. (3.20)

The second line of (3.20) uses the “standard” operator substitutions trick
used above in the section “Single particle Schrödinger’s equation in lab space”.
To show consistency among the definitions, Born relies on the fact that
P(rlab), S(rlab, t), Re[� lab(rlab, t)], and Im[� lab(rlab, t)] are all classical scalar and
vector fields defined in lab space, as per the definitions given above in the section
“Laboratory Space and Classical Fields”. Green’s theorem then applies to these
fields. By using Green’s theorem and Schrödinger’s equation (3.12) together, Born
proceeds to show that the fluid-flow conservation equation,

∂/∂t P(rlab, t) + ∇Lab · S(rlab, t) = 0 , (3.21)

applies to his probability (and particle) density and flux. Given the conservation
equation (3.21), he then refers to the vector field,S(rlab, t), as a “conserved probability
current”. Born (1933, 1935, 1969, Appendix XX) then demonstrates the use of (3.21)
by applying it to the problem of flux conservation in Rutherford scattering. It is
important to notice that equation (3.21) intimately relies on the use of the lab-space
gradient operator, defined above by (3.3).

Born’s presentation and definitions became an immediate hit and were univer-
sally adopted. They are repeated in many textbooks, regardless of the book’s choice
of propagation space. Textbooks that give this presentation in lab space include
Schiff18 (1955, pp. 22–24), Dicke and Wittke (1960, pp. 60–62), Merzbacher (1961,
1970, pp. 35–37), Eisberg, (1961, 1967, pp. 172–175) and French and Taylor (1978,

16 Schiff (1955) and Dicke and Wittke (1960) use the symbol S for the probability current density,
while Messiah (1961) uses the symbol J.
17 Dicke andWittke (1960, pp. 60–62) say, “One may think of this wave as representing a swarm of
particles with an average density of one particle per cubic centimeter. In this case, the particles are
moving with momentum mv, or have a velocity v = p/m. With this velocity and with an average
density of one particle per cubic centimeter, v particles per second pass through a surface area of
one square centimeter perpendicular to the direction of motion of the particles. This constitutes the
probability flux of the wave.”
18 Schiff (p. 24) says “It is thus reasonable to interpret S(r, t) given by Eq. (7.3) as a probability
current density.” Further on, he hedges and says “While this interpretation of S is suggestive, it must
be realized that S is not susceptible to direct measurement in the sense in which P is. Nonetheless,
it is sometimes helpful to think of S as a flux vector.”
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pp. 374–378). Textbooks that give the argument in configuration space are discussed
in the section “Born’s Argument-Space Ambiguity”.

The Configuration-Space Formulation of Quantum
Mechanics

The configuration-space school is described in John von Neumann’s seminal text-
book, Mathematiche Grundlagen der Quantenmechanik, (1932, 1955), and also in
Messiah (1961). Von Neumann’s (1932, 1955) textbook, unlike it’s contemporary,
Born’s (1933, 1935, 1969) textbook, promotes the calculation of predictions for
the results of experiments via the use of purely abstract mathematical tools with
no tangible space–time counterparts. It is formulated using a very general abstract
k-dimensional argument space for the wave function that is called configuration
space. The quantum mechanical system being described by the school’s formalism
is very general, and the associated wave function, �config, is similarly very general.
It describes a “system” with k-degrees of freedom. The associated Schrödinger’s
equation can be tailor-made to fit any system by specifying its degrees of freedom
and the associated Hamiltonian. The wave function can describe a system comprised
of any number, N, of particles, by letting the degrees of freedom be the positions
of these N particles. The number of particles in the system may include the special
cases N = 1 and N = 0. By including the N = 0 case, the existence of some finite
number of particles is thus optional. The configuration-space formalism far surpasses
the generality of the systems that can be described by those covered by the lab-space
formalism.The latter is limited to describingonly single-particle systems. It should be
stressed that lab space is never usedwithin the configuration-space formalism, except
for specifying the locations of detectors at the end-point of a particle’s presumed
trajectory.

Configuration Space

The configuration-space school wave function’s arguments are provided by configu-
ration space. That space is an abstract mathematical vector space used for specifying
the configuration of a general dynamical system. It originated with the Hamilton–
Jacobi theory of classical mechanics, and is commonly used for describing the
dynamics of a very general system with k degrees of freedom, and especially for
describing systems where the forces acting between particles and their constraints
are unknown.

Configuration space can be used in either classical mechanics or quantum
mechanics. The system may consist of a continuous field (a continuum), such as
a fluid’s density, where there are no particles present. One way of doing so is
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to subdivide lab space into very small cells. The necessary degrees of freedom
may then consist of the set of field values at each cell. Alternatively, the field’s
value may be decomposed as a sum of normal modes, and the degrees of freedom
then taken to be themodes’ expansion coefficients. Configuration space is also useful
for describing the dynamics of a (non-continuum) system consisting ofN particles. In
that case, k= 3Ndegrees of freedomare used to specify the set ofNpositions of theN
particles. For classical mechanical systems, Goldstein (1950, p. 11) in his bookClas-
sical Mechanics, defines “degree of freedom” as an allowed unconstrained motion
along an independent generalized coordinate. In quantum mechanics, configuration
space is generalized beyond Goldstein’s definition to include motion in energetically
forbidden domains, thereby to allow barrier penetration and tunneling. It is also
generalized to allow non-classical motions or other variations such as spin, etc. For
example, Bjorken and Drell (1964, p. 2) use a configuration-space wave function,
�config(q1,config, …, qk,config, s1,config, …, sk,config; t), whose arguments are the system’s
degrees of freedom, and include the variables, s1,config, …, sk,config, which are the
non-classical spin degrees of freedom of the various particles in their system.

Configuration space is adapted for use by quantum mechanics by what is called
“transformation theory”.Configuration space is a subset ofwhat is called phase space,
which further includes the set of k-generalized momenta conjugate to the k-degrees
of freedom. An important feature of quantum theory is that �config depends only this
subset of variables, e.g. on either the k-degrees of freedom themselves, or on the
k-generalized momenta conjugate to them, or on any possible linear transformation
among these that provides some other transformed set of k-degrees of freedom.

Messiah (1961, p. 164) succinctly defines the wave function space used by the
school by saying “The wave functions of wave mechanics are the square integrable
functions of configuration space, that is to say, the functions �config(q1, …, qR) such
that the integral

∫
|�config(q1,config,…, qR,config)|2) dq 1,config,…, dqR,config, converges.”

… . “In the language of mathematics, the function space defined above is a Hilbert
space. …”.

As a result of its abstract nature, configuration space (and/orHilbert space) is suffi-
ciently general to include additional degrees of freedom that are not associated with
translational degrees of freedom. Such additional degrees of freedom may include
the spin degrees of freedom of say the j-th particle. Furthermore, the generality of
this abstract space allows Schrödinger’s equation to be formulated to describe the
dynamics of the spin-degrees of freedom, of say a 2-spin system, without reference
to any spatial variables at all. This latter feature is an important asset for calculating
the quantum–mechanical predictions for a Bell’s theorem CH inequality test.

Despite its great generality, however, configuration space and the associated wave
function have important limitations that of are worthy of note:

(1) A position within the lab where the wave function is to be evaluated is not
a degree of freedom of the system. Indeed, �confighas no specified position
within the lab where it is to be evaluated. It has the same value everywhere.
Its value depends only on the system’s “configuration”, i.e. on the system’s
degrees of freedom.
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(2) The various theorems of vector analysis (e.g. Green’s theorem(s), Gauss’s
theorem, Stokes theorem, etc.) do not apply to functions defined in configura-
tion space, since these functions have no lab-space dependence.

(3) There are no discernable waves that propagate in configuration space, like the
waves that propagate in lab space. Dicke and Wittke (1960), and Merzbacher
(1961,1970) both express alarm about this feature of configuration space
(see the section “Born’s Ambiguity’s Misuse by the Lab-Space Formulation
School”). To allow itself to be visualized, an entity like a wave must move
in lab space. This fact becomes annoyingly apparent when two particles are
needed for describing the helium atom.

(4) Messiah (1961, p. 119) notes that “The particle associatedwith thewave gener-
ally possesses neither a precise position nor a precise momentum.”Despite this
claim, the single particle configuration-space wave function, �config,1(r1,config;
t), is defined in terms of the particle’s “precise position” and thus depends on
it’s “precise position.” This latter difficulty/ambiguity is somehow excused via
the use of transformation theory.

(5) Bjorken and Drell (1964, p. 2) state “The wave function has no direct physical
interpretation, however, |�config(q1,config, …, qn,config, s1,config, …, sn,config; t)|2 ≥
0 is interpreted as the probability of the system having values of q1,config, …,
sn,config; at time t.Evidently, this probability interpretation requires that the sum
of positive contributions to |�config|2 for all values of (q1,config, …, sn,config) at
time t to be finite for physically acceptable wave functions�config.” Bjorken and
Drell, however, never explain the difference between a wave function that “has
no direct physical interpretation” and a “physically acceptable wave function”.

The section “Born’s Argument-Space Ambiguity” further discusses some of these
limitations and their unanticipated effects.

Schrödinger’s Equation in Configuration Space

von Neumann (1932, 1955, Chap. 1) formulates Schrödinger’s equation in configu-
ration space. His formulation is similar to that by Messiah (1961, p. 71). It is derived
using the Hamilton–Jacobi theory framework. Schrödinger’s equation for a system
with k configuration-space degrees of freedom, q1,config,…, qk,config is given first. The
configuration space wave function for this system is then�config(q1,config, …, qk,config;
t), where q1,config, …, qk,config are dummy variables representing the k-degrees of
freedom in the function. Schrödinger’s equation for this system is

Hconfig
(
q1,config, . . . , qk,config, −i�∂/∂q1,config, . . . , −i� ∂/∂qk,config

)

�config
(
q1,config, . . . , qk,config; t

) = i� ∂/∂t �config
(
q1,config, . . . , qk,config; t

)
,

(3.22)
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whereHconfig is the Hamiltonian operator for the system. In the particular case when
the system consists of Nmobile particles whose positions are specified by the k= 3N
coordinates, q1,config, …, q3N,config, von Neumann sets q3j-2,config, q3j-1,config, q3j,config to
be dummy variables representing the Cartesian coordinates of the j-th particle (with
j = 1, …, N), as per

q3j−2,config ≡ xj,config, q3j−1,config ≡ yj,config, and
q3j,config ≡ zj,config.

(3.23)

Using these variables, one may formally define associated configuration space
dummy variable vectors each specifying the position of the j-th particle within the
lab as

rj,config ≡ êxxj,config + êyyj,config + êzzj,config, (3.24)

as well as with the momentum operator for the j-th particle,

pj,config ≡ −i�∇j,config. (3.25)

Here, the configuration-space gradient operator is defined by

∇j,config ≡ êxxj,config∂/∂xj,config + êy∂/∂yj,config + êz∂/∂zj,config. (3.26)

It should be noted that this operator is not at all the same as the lab-space gradient
operator, defined above by equation (3.3).

The N-particle wave function for a system of N-particles is denoted by
�config,N(r1,config, r2,config, …, rN,config, t). Note that the values of �config and �config,N

depend only upon the values of the various k degrees of freedom, and/or upon
the various positions of the N particles in configuration space. Also note that the
values of these functions have no explicit dependence on rLab. That is to say, �config

and �config,N have the same value everywhere in lab space, and their values (also
sometimes called amplitudes) are spatially constant. While the configuration-space
gradient operator defined by (3.26), may have a formal symbolic appearance to the
lab-space gradient operator defined above by (3.3), it is not the same operator! The
configuration-space gradient operator produces the rate of change of its operand
�config,N with respect to a change in the position of particle j, while the lab space
gradient operator produces the rate of change of its operand, �Lab, with respect to
the lab-space position where said operand is to be evaluated.

It is emphasized that when the system consists of N mobile particles, the wave
function, �config,N(r1,config, r2,config, …, rN,config), has no evident spatial dependence,
and no specified position in lab space where it is to be evaluated. That is, it does
not depend on rlab. Instead, its various arguments indicate its dependence upon the
positions, r1,config, r2,config, …, rN,config, of the N particles. It is also important to note
that no special status is given to particle 1 (of N) and to the associated first argument
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of �config,N, even for the special case N = 1. Thus, even for a single particle system,
the first argument, r1,config, still specifies the position of the one and only one particle,
and not the position within in the lab where the function, �config,1, is to be evaluated.

As a result, for a system with k degrees of freedom,

∇Lab�config
(
q1,config, . . . , qk,config; t

) = 0 (3.27)

holds, and for a system of N particles

∇Lab�config,N
(
r1,config, r2,config, . . . , rN,config, t

) = 0 (3.28)

holds for any N, including for the special case, N = 1.
By using an operator substitution trick similar to that used by the lab space

formulation, the Hamiltonian operator for an N-particle (spinless) system is given
by

Hconfig,N(r1,config, r2,config, . . . , rN,config, −i�∇1,config, −i�∇2,config, . . . ,

−i�∇N,config)�config,N
(
r1,config, r2,config, . . . , rN,config; t

)

≡
∑

j=1,N

[ − (
�
2/2m

)∇2
j,config + V

(
rj,config

) ] +
∑

j,k=1,N

Vj,k
(
rj,config, rk,config

)
.

(3.29)

The last term in (3.29) allows for interactions between the particles. Schrödinger’s
time-dependent equation for an N-particle system takes the form

Hconfig,N(r1,config, r2,config, . . . , rN,config, −i�∇1,config, −i�∇2,config, . . . ,

−i�∇N,config)�config,N
(
r1,config, r2,config, . . . , rN,config; t

) =
i�∂/∂t �config,N

(
r1,config, r2,config, . . . , rN,config; t

)
.

(3.30)

In the N = 1 special case, the single particle wave Schrödinger’s time-dependent
equation is

Hconfig,N=1(r1,config,−i�∇1,config)�config,1
(
r1,config; t

) = i�∂/∂t �config,1
(
r1,config; t

)
.

(3.31)

Finally, stationary state solutions, �config,N(r1,config, r2,config, …, rN,config), are
readily found by factoring out the time dependence, as per

�config,N
(
r1,config, r2,config, . . . , rN,config, t

)

= �config,N
(
r1,config, r2,config, . . . , rN,config

)
exp (−iEt/�)) ,

(3.32)
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whereupon Schrödinger’s N-particle and single particle time-independent equations
in configuration space are given by

Hconfig,N(r1,config, r2,config, . . . , rN,config, −i�∇1,config, −i�∇2,config, . . . ,

−i�∇N,config)�config,N
(
r1,config, r2,config, . . . , rN,config

)

= Etot−N�config,N
(
r1,config, r2,config, . . . , rN,config

)
,

(3.33)

and

Hconfig,N=1(r1,config, −i�∇1,config)�config,1
(
r1,config

) = Etot−1�config,1
(
r1,config; t

)
.

(3.34)

The quantities Etot-1 and Etot-N are energy eigenvalues for single particle and N
particle systems, respectfully.

Calculation of Probabilities Using the Configuration-Space
Formulation

Messiah (1961, pp. 126–127) shows how to calculate probabilities within the
configuration-space formulation using Born’s statistical interpretation. The joint
probability density for finding the N particles at a specified set of N positions
within the lab within in the differential volume elements, d3r1,config ≡ dxj,config
dyj,config dzj,config, etc. d3r2,config, is found by evaluating the absolute square of the
configuration-space wave function at those N positions within the lab. Thus the
probability density, P1,2, …,N, for finding a particle 1 at a detector that is positioned at
r1,det, and also finding particle 2 at a second detector that is positioned at r2,det, etc.,
between times tf and tf + dt, is found by setting the dummy variable arguments in
�config,N, to r1,config = r1,det, r2,config = r2,det, etc. and then by calculating it via

P1,2, ...,N
(
r1,config = r1,det, r2,config = r2,det, . . . , rN,config = rN,det; t = tf

)

= ∣
∣�config,N

(
r1,config = r1,det, r2,config = r2,det, . . . , rN,config = rN,det; t = tf

)∣
∣2.

(3.35)

Normalization of this probability density is then

∫ d3r1,config. , d3r2,config, . . . , d3rN,configP1,...,N
(
r1,config, r2,config, . . . , rN,config, t

)

= ∫ d3r1,config, d3r2,config, . . . , d3rN,config

∣
∣�config,N

(
r1,config, r2,config, . . . , rN,config

)∣
∣2, t)

= 1.
(3.36)
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For say an N = 2 particle system, the joint probability density for finding the
particles at the positions r1,config = r1,det and r2,config = r2,det is given by

P1,2
(
r1,config = r1,det, r2,config = r2,det; t = tf

)

= ∣
∣�config,2

(
r1,config = r1,det, r2,config = r2,det; t = tf

)∣
∣2.

(3.37)

The individual probability density for finding particle 1 at position r1,config = r1,det,
without caring about the position particle 2 is given by integrating over the possible
positions, r2,config, for particle 2,

P1
(
r1,config = r1,det; t = tf

) = ∫P1,2
(
r1,config = r1,det, r2,config; t = tf

)
d3r2,config

= ∫ ∣
∣�config, N=2

(
r1,config = r1,det, r2,config; t = tf

)∣
∣2d3r2,config,

(3.38)

and the corresponding individual probability density for finding particle 2 at position
r2,config,2 is similarly given by

P2
(
r2,config = r2,det; t = tf

) = ∫ P1,2
(
r1,config, r2,config = r2,det; t = tf

)
d3r1,config

= ∫ ∣
∣�config, N=2

(
r1,config, r2,config = r2,det; t = tf

)∣
∣2d3r1,config.

(3.39)

Factorization of Schrödinger’s N-particle Configuration-Space
Wave Function

An important “factorization criterion” for Schrödinger’s N-particle configuration-
space wave function is given in many textbooks to argue that the N-
particle configuration-space wave function, �config,N(r1,config, r2,config, …, rN,config,
t) is a proper generalization of the single particle wave function, formulated in either
lab or configuration space. Unfortunately, it really only works for the latter formu-
lation, and even then, it only works in the unrealistic special situation where any
and all interaction between these particles exactly vanishes. It is readily demon-
strated to apply to both the time-independent and time-dependent configuration-
space Schrödinger’s equations. The demonstration is usually given for two-particle
systems, but it may be generalized to apply to N-particle systems. It is also typically
given for systems for which the degrees of freedom are position and momentum, as
is done here. However, it also may be generalized to apply to systems using other
degrees of freedom, such as particle spin. The argument is given, for example, by
Dicke and Wittke (1960, p 111) for single particle wave functions in lab space, and



3 Laboratory-Space and Configuration-Space Formulations … 67

by Messiah (1961, pp. 127–128), for single particle wave functions in configuration
space. Messiah’s treatment is followed here.

Consider a two-particle system for which the following conditions hold:

(1) The interaction between the two particles vanishes. That is, the interaction
potential between them is assumed to be time independent and vanishes for all
time, as per

V1,2
(
r1,config, r2,config

) = 0, (3.40)

(2) The two-particle configuration-space Hamiltonian has the form of a sum of
two terms.

Hconfig,N=2(r1,config, r2,config, −i�∇1,config, −i�∇2,config)

= Hparticle1,config,N=1(r1,config, −i�∇1,config)

+Hparticle2, config,N=1(r2,config, −i�∇2,config),

(3.41)

whereHparticle1,config,N=1 andHparticle2, config,N=1 are the Hamiltonians for the two
individual particles.

(3) �config,1(r1,config) and �config,2(r2,config) are energy eigenfunctions of the single
particle Schrödinger’s equations, (3.34) for particles 1 and 2, respectively with
respective (single particle) energy eigenvalues E1, and E2.

(4) �config,N=2(r1,config, r2,config) is an energy eigenfunction of the N = 2
particle Schrödinger’s equation, (3.33) with the energy eigenvalue Etot-N=2 =
E1 + E2.

When conditions (1)–(4) hold, it is readily shown that the product of the two single-
particle eigenfunctions is then an eigenfunction of the N = 2 particle Schrödinger’s
equation, as per

�config,1
(
r1,config

)
�config,2

(
r2,config

) = �config,N=2
(
r1,config, r2,config

)
. (3.42)

Messiah (1961, p. 128) notes that this “factorization criterion”, (3.42), persists in
time, so that, if initially at t = t0, the time-dependent two-particle wave function can
be factored, then this condition persists for t > t0, thus

�config,N=2
(
r1,config, r2,config, t

) = �particle1,config, N=1
(
r1,config, t

)

�particle2,config, N=1
(
r2,config, t

)
, (3.43)

holds for t > t0. Messiah (1961) also notes that when the wave function thusly factors,
then the joint probability density, as defined above by (3.37), also factors,

P1,2
(
r1,config, r2,config

) = P1
(
r1,config,2

)
P2

(
r2,config,2

)
, (3.44)
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and the particles are statistically independent. Messiah’s “factorization criterion”,
(3.43), is equivalent to particle independence.

Probabilities of separated measurements specified by (3.43), (3.38), and (3.39)
may be compared with similar probabilities calculated via Local Realism using (3.4),
(3.5) and (3.7). Note that the particle-independence factorization condition, (3.44), is
similar to (3.6), used by Local Realism above in the section “Bell–Clauser–Horne–
Shimony Local Realism”. There is no similar joint probability of separated measure-
ments for a lab-space formulation because the lab space formulation describes only
single-particle systems.

Wave-Function Factorization or Not!

Lab-space formulations of quantummechanics (e.g. Dicke andWittke (1960, p 111))
fallaciously use the factorization argument of the preceding section to argue that
�config,N=2(r1,config, r2,config) is a proper generalization of single-particle lab-space
wave function, � lab(rlab), so as to allow the lab space formulation to handle N-
particle systems. The argument immediately crumbles, however, when one discovers
(as Dicke andWittke note) that by doing so, the wave function’s wave-like properties
are then lost. Dicke and Wittke, however fail to note that not only is the argument
fallacious, it is also incomplete and ignores other even worse problems. A more
complete argument shows that, in the fully general case, even when there is no
interaction between the particles, then (3.42), (3.43), and (3.44) do not necessarily
hold. Similarly, Messiah does not comment that, even if the particles do not interact
after t = t0, but if they have ever interacted in the past, even only slightly prior
to t = t0, then the N-particle wave function does not factor, and the particles are
not statistically independent. An arbitrary choice with t0 finite, and/or with V12

possibly time dependent then belies the possibility that the particles may have been
interacting at some time since the beginning of the universe.

More importantly, the factored forms (3.42) and (3.43) are not the only solutions
to Schrödinger’s equation(s), even when V12 is always time independent. Important
other solutions exist that apply to entangled particle states, evenwhen the particles are
non-interacting. An important property of entangled state solutions then provides the
converse of Messiah’s independent particle property. That is, entanglement persists
in time, even when there is no longer any interaction between the particles.Messiah’s
argument should correspondingly be modified to read: Once independent and with
no interaction, then always independent. Conversely, once entangled and even with
no interaction, then always entangled.

The usage of the abovewave-function factorization argument by authors to bolster
their claims that the configuration-space wave function, �config,N(r1,config, r2,config,
…, rN,config, t), is an appropriate N-particle generalization of the single-particle lab-
space wave function, �Lab(rLab, t), thus totally looses its credibility when the exis-
tence of these other entangled state solutions is revealed. If Messiah’s argument had
been completed correctly, then the appropriateness of �config,N(r1,config, r2,config, …,
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rN,config, t) as a generalization of the N = 1 single particle wave function would be
immediately found wanting.

Curiously, despite entanglement’s absence in the arguments of the above-
mentioned authors, it has been around for a long time. For example, Condon and
Shortley (1964) formulate Schrödinger’s equation exclusively using configuration
space. Their application of quantum mechanics is to many-particle systems. They
discuss the factorization property, along with entanglement, and provide a practical
use for it. Typically, independent single-electron Hamiltonians and factored wave
functions are used there to provide an approximate first-guess solution to an N-
particle problem. The interaction potential is then used as a small perturbation to
provide an improved solution.

Entangled particle states typically occur when there are degenerate solutions to
the single-particle Schrödinger’s equations, (3.34), as may occur when there are
additional degrees of freedom such as spin for the particles. Entangled particles do not
need to be so-called “identical particles”. The versatility of the configuration space
formulation now becomes particularly useful. Suppose that the single particle wave
functions, �particle1,config, N=1(r1,config, s1) and �particle2,config,N=1(r2,config, s2), include
additional degrees of freedom, s1 and s2. Suppose also that these degrees of freedom
refer to discrete-state variables, such as spin. This degree of freedom for spin ½
has only two allowed states. If allowed integer dummy index values, s1, s2. = 1, 2
are used, then both associated indexed values may be displayed together as a two
component column vector.19 Alternatively, the symbols, s1, s2, are sometimes used
as dummy indicies. They may each take on one of the two values, ↑ or ↓. (Born
uses the values + and −.) Finally, assume that the energy eigenstates are degenerate
and both particles have the same energy, irrespective of the value of sj. It is then
straightforward to show that

�config,N=2−particles
(
r1,config, r2,config

) = 	s1=↑,↓	s2=↑,↓as1,s2
�particle1,config, N=1

(
r1,config, s1

)
�particle2,config, N=1

(
r2,config, s2

)
.

(3.45)

The form (3.45) is no longer a simple product, as per (3.42), but is instead now a
sum of products of eigenfunctions, with associated amplitudes as1, s2. In some special
cases (and only in these cases), such as when all of the various as1, s2 vanish except
one, we have a simple product state like (3.42).

The form (3.45) is useful for demonstrating the Einstein–Podolsky–Rosen
paradoxviaBohm’s two entangled-spinsGedankenexperiment. (SeeClauser (2017).)
There, each of the particles may proceed along one of two different paths through
an associated Stern-Gerlach apparatus. When, for example, the spatial dependence

19 This alternative form is used by Born (1933, 1935, 1969, p.188). Referring to spin, he comments
“We can take this new degree of freedom into account formally, by introducing besides the ordinary
co-ordinates an additional co-ordinate σ , which can take only two values together; … We thus
obtain a wave function which now depends on five co-ordinates: Ψ = Ψ (x,y,z,t,σ ). It suggests
itself, however, to split up this wave function into two components…” Nowhere, however, does Born
admit that this set of “five-coordinates” is, in fact, in configuration space. (See the section “Born’s
Argument-Space Ambiguity”.).
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in (3.45) is not needed, and only the spin dependence is needed or relevant, then
�particle1,config, N=1(s1) and �particle2,config,N=1(s2) can be used to represent the single
particles’ wave functions. The two-particle entangled-state wave function can then
be represented as

�config,N=2−particles = 	s1=↑,↓	s2=↑,↓as1,s2
�particle1,config, N=1(s1) �particle2,config, N=1(s2).

(3.46)

It should be noted in passing that equations (3.27) and (3.28) hold for both forms
(3.45) and (3.46), so that no conserved probability current can be calculated for either
of these two particle systems.

It also should also be noted in passing that Messiah does not give any criterion
regarding how small V1,2 must be for it to be considered “negligible”, eventhough
his argument requires that it vanish completely, as per condition (1), above. Unfortu-
nately, particle independence will decay exponentially in time, whereby Messiah’s
persistence in time of particle independence is then actually really only transitory,
even for very small V1,2. Furthermore, Spitzer (1956) points out that the cross-
section for classical Coulomb scattering between two charged particles diverges
and becomes infinite at small scattering angles. Thus, all charged particles always
continuously interact with each other, by at least a very small amount. Moreover, all
charged particles have been thusly interacting with each other since the beginning
of the universe. Additionally, a significant fraction of the universe is comprised of
charged particles (protons and electrons), so it would seem short-sighted to ignore
their interaction completely. Correspondingly, one may conclude, quantum mechan-
ically, that all charged particles are always entangled, at least by a very small amount,
especially since t = t0 may be taken arbitrarily to be a time in the very distant past.
Given that for any non-vanishing V1,2, particle independence decays in time, then
entanglement correspondingly grows in time. Eventually, entanglement always wins
out over independence. Onemay correspondingly wonder, “Is being a little bit entan-
gled like being a little bit pregnant? Perhaps for both cases, the importance of both
conditions depends upon how long you wait.”

Born’s Argument-Space Ambiguity

Unfortunately, there are important discrepancies between the lab-space and
configuration-space formulations of quantummechanics. These discrepancies can be
traced to originate with a somewhat hidden ambiguity that was introduced by Born
(1933, 1935, 1969) in his seminal book. While promoting his “statistical interpreta-
tion”, and discussing the configuration-space description of two-particle Rutherford
scattering, Born (1933, 1935, 1969, pp. 95–96) states

“There are grounds for the conviction of the correctness of the principle of associating wave
amplitude with number of particles (or probability). In this picture, the particles are regarded
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as independent of each other. If we take their mutual action into account, the pictorial view
is to some extent lost again. We have then two possibilities. Either we use waves in spaces
of more than three dimensions (with two interacting particles we would have 2 X 3 = 6
coordinates), or we remain in three-dimensional space but give up the simple picture of the
wave amplitude as an ordinary physical magnitude and replace it with a purely abstract
mathematical concept, (the second quantization of Dirac, Jordan) into which we cannot
enter. … This is for us the really important question, for clearly enough the corpuscular
and wave ideas cannot be fitted together into a homogeneous theoretical formalism without
giving up some fundamental principles of the classical theory. The unifying concept is that
of probability.”

Born thus takes � lab(rlab, t) to be an “ordinary physical magnitude” in lab space,
i.e. in what he calls “three-dimensional space”. He also claims that we can “remain
in three-dimensional space” i.e. use the amplitude � lab(rlab, t) in lab space as long
as we use his probability “concept”. He thereby claims that � lab and �config,N=2, are
equivalent, and that both have an “ordinary physical magnitude”, even though they
are differently defined for the twodifferent argument spaces.He asserts that this is true
simply because they are both defined to yield the same probability.Added together, he
is saying that � lab(rlab, t) and �config,N=2(r1,config,2, r2,config,2, t) and their associated
argument spaces, rlab and r1,config,2, r2,config,2, are equivalent and interchangeable,
He doesn’t seem to notice that there are, in fact, two (or more) different “three
dimensional spaces” to choose from—the argument spaces for rlab and for r1,config,1—
and he correspondingly does not distinguish between them.

Herein he also creates an ambiguity regarding the meanings and uses of the argu-
ments, rlab and r1,config,2, r2,config,2, and of the associated wave function’s, � lab

and �config,N=2. He rejects the idea that either wave function’s meaning is that
used in quantum field theory (as discussed below in the sections “Quantum Field
Theory 1—Quantization of Known Classical Fields” and “Quantum Field Theory
2—Second Quantization ofWave-Functions”), because it is “a purely abstract math-
ematical concept”.Motivated by his evident distaste for purely abstractmathematical
concepts, and given his proclaimed equivalence of the spaces, Born appears to say
that the use of lab space may be chosen simply as a matter of taste. By doing so, he
misses the fact that configuration space and the associated wave function,�config,N=2,
are also themselves purely abstract mathematical concepts, which he admits that he
dislikes.

Born’s quote creates an ambiguity. It has thus pronounced the lab-space and
configuration space formulations to be equivalent and interchangeable. Taken at face
value, any such claim is clearly unfounded. The spaces are indeed very different, as
has been demonstrated above.Born andhis lab-space-formulation followers similarly
appear to have missed (or chosen to ignore) the fact that configuration-space is
not as versatile as they may have assumed. It cannot do two incompatible things
simultaneously. Thewave function’s argument clearly does not encompass the ability
to represent both the position in lab space where � is to be evaluated, and, at the
same time, also simultaneously to represent the configuration of the system being
described. Simply put, it cannot be multiply defined. The two formulations and their
associated argument spaces are clearly not equivalent. The two wave functions are
also not equivalent. In addition, they are not equal. As noted above in the section
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“The Configuration-Space Formulation of Quantum Mechanics”, there is no spatial
dependence for �config. Furthermore, recall that there is no special meaning for the
various arguments, especially for the first argument of �config,N=1, in the special case
N = 1. It is not the same argument as that of � lab. As a result, we have in general,
rlab = rconfig,1,1, even though they are both formally three-dimensional.

Correspondingly, for any number of particles, N, described by �config,N, we have
(as per Eqs. (3.27) and (3.28))

∇Lab�config,N = 0, and∇Lab�config,1 = 0. (3.47)

Gauss’s theorem, Green’s theorem and the conservation law (3.21) correspond-
ingly do not apply to �config,N, or to �config,1. Since the arguments and definitions
of the wave functions � lab and �config,N=2, and the definitions of their associated
arguments, rlab and r1,config,2, r2,config,2 are all very different, one also must conclude
further that

�lab = �config,N=2, and rlab = rj,config,N, (3.48)

hold for any j and/or N, including the special cases j = N = 1.
As we have noted in the section “Introduction -What quantummechanics is Not”,

Born’s ambiguity is produced by a sneaky slight-of-hand. The ambiguity manifests
itself by using the same ambiguous (multiply defined) symbol r (or symbols r1, r2,
…) to represent verydifferent quantities (or sets of quantities)with differentmeanings
altogether. Then, via this subterfuge two different equations (or sets of equations)
that are formally the same in their appearance(s) are produced and claimed to govern
nature. Both equations (or sets of equations) use the common ambiguous symbol
(or symbols). Presto, the equations are thereby claimed to be equivalent, when in
reality they are not. The misdirection and substitution are done so seamlessly that no
one is aware of the prestidigitation that has passed. In particular, the configuration-
space single-particle Schrödinger’s equations (3.31) and (3.34) and the lab-space
Schrödinger’s equations (3.14) and (3.16) are not the same, despite their formal
similarities. Indeed, they are formulated in very different argument spaces.

Born’s Ambiguity’s Misuse by the Lab-Space Formulation
School

Unfortunately, a lab-space formulation of wave mechanics is found to suffer from
several serious deficiencies. Paramount among these is that it can only describe single
particle systems. We have just noted that there does not appear to be any rigorous
(local) method to allow it to be extended to N ≥ 2 particle systems. As a result,
a lab-space formulation cannot describe entanglement, as is needed for describing
the spectra of atoms with more than one electron and for Bell inequality tests. The
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inability of the lab-space formulation (outlined above in the section “The lab-space
formulation of quantum mechanics”) to find a lab-space description of two-particle
systems becomes immediately apparent when one is faced with treating the helium
atom.

Lab space advocates (see the section “The Lab-Space Formulation of Quantum
Mechanics”) formulate Schrödinger’s equation, specifically to allow wave propaga-
tion in lab space via (3.9). Correspondingly, a lab-space wave function clearly can
demonstrate actual wave motion, as is depicted in Figs. 3.1–3.7, for matter waves.
Correspondingly, said wave function can be used as a model for experimental obser-
vations, as are described, for example, by French and Taylor (1958, 1978). Unfor-
tunately, a configuration-space wave function, like �config,N=2 cannot demonstrate
wave motion, as was noted by Dicke and Wittke (1960) and by Merzbacher (1961,
1970). The whole lab-space model depicted in Figs. 3.1–3.7 now begins to crumble.

While attempting to describe the helium atom, Merzbacher (1961, 1970, p. 347)
notices the argument-space discrepancy between single particle and two particle
wave functions. He comments “Since � is now a function of two different points in
space, it can no longer be pictured as a wave in the naïve sense which we found so
useful in the early chapters of this book. Instead,� for two particles must sometimes
be considered a wave in a six dimensional configuration space of the coordinates
r1,config,2 and r2,config,2.” Merzbacher, however, does not offer any suggestions for
restoring the lost utility of his now discredited early chapters. He also says that
viewing a wave function as a description of waves propagating in lab space is naïve.
He does not, however, offer a more sophisticated viewpoint.

Similarly, Dicke and Wittke (1960, p. 110) comment “Hence the wave function
has the form � = �config,N=2(r1,config,2, r2,config,2,t). Note that this function can hardly
be interpreted as a physical wave moving in ordinary three-dimensional space. It has
the form of a wave moving in a six-dimensional space. Since this is the analog of the
wave function for a one-particle system, it is clear that physical wavelike properties
which a single particle wave function exhibits are properties which are to be ascribed
to one-particle systems only. In other words, � is a physical wave only to the extent
that it can be associated with the motion of single particles.”

Almost all authors of lab-space-formulation based textbooks incorrectly enlist
Born’s argument-space ambiguity, alongwithMessiah’s particle-independence crite-
rion, as described above in the section “Factorization of Schrödinger’s N-particle
Configuration-Space Wave Function”, to fill the N-particle description void left
by the lab-space formulation. Correspondingly, it seems probable that the ambi-
guity introduced by Born is the cause of the conceptual teachings by the lab-space
formulation school and the configuration-space school becoming bifurcated in subse-
quently authored textbooks. Accordingly, Dicke andWittke (1960, pp. 110–111) and
French and Taylor (1958, 1978, pp. 558–560), proclaim (followingBorn’s quote) that
the 2-particle configuration-space wave function, �config,2(r1,config, r2,config, t), is an
appropriate 2-particle “generalization” of the single-particle lab-space wave function
�Lab(rLab,t). They do so by simply swapping dummy index definitions, r1,config ↔
r1,lab, r2,config ↔ r2,lab, and ignoring the implications of said swap. Our use herein of
“Lab” and “config” subscripts immediately reveals the error in this procedure. The
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argument spaces for lab-space and configuration-space wave functions are clearly
not the same. The meanings of the arguments in the wave functions are also not the
same. One wave function clearly cannot be considered to be the same as the other,
simply because it has the samenumber of three- “dimensional” arguments, or because
its absolute square yields a probability. The associated lab-space and configuration-
space Schrödinger’s equations, (3.14) and (3.31), while formally similar in appear-
ance (without the distinguishing subscripts), are actually very different, especially
in their meanings. Thus, there is no proper N-particle generalization of the lab-space
Schrödinger’s equation, (3.14). A lab-space formulation is thus limited to the treat-
ment of single particle motion, as was observed and emphasized byDicke andWittke
(1960).

Alas, the conceptual model that lab-space formulations promote and use is found
to be untenable and unable to describe even a helium atom. One might be tempted
to justify keeping the lab-space formulation of quantum mechanics, because it
perhaps provides an approximation to a better theory. However, changing from lab
space hardly can be considered an approximation of configuration space. Is an apple
an approximation of an orange? Nonsense! That justification thus fails miserably.
Unfortunately, the price onemust pay is (sadly) that the configuration-space formula-
tion requires a highly abstract mathematical formalism that is difficult to understand,
and that provides no conceptual model to allow its inner workings to be visualized.

Born’s Ambiguity’s Misuse by the Configuration-Space School

Another important discrepancy between the two schools that is caused by Born’s
ambiguity occurs with the derivation and use of his conserved probability current. A
requirement for any formulation of quantummechanics is the conservation of particle
number. Born had demonstrated this requirement to hold for Rutherford scattering
using the lab space formulation. Configuration space advocates are correspondingly
obliged to offer a similar assurance. They generally do so by using Born’s ambi-
guity to demonstrate conservation of particle number, by using what Messiah (1961,
pp. 119–122) calls a “conserved current concept”. Messiah claims “The property of
conservation of the norm has a simple interpretation if one introduces the notion of
current.” His derivation follows exactly that by Born, and totally ignores the fact that
Green’s theorem does not apply in configuration space. He correspondingly ignores
Eq. (3.47). Despite this oversight, he and other authors (see, for example, Landau and
Lifshitz (1958, 1965)) claim “conservation of probability in configuration space”,
whatever that means. (Messiah does not tell us what it means.)

Messiah (1961, pp. 222–223) also provides a second, alternative derivation of
the conservation equation for the current in configuration space using the clas-
sical Hamilton’s function S. He notes that “In the classical approximation, �config

describes a fluid of non-interacting particles of mass m, (statistical mixture) and
subject to the potential,V(rconfig), the density and current density of this fluid at each
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point of space are at all times respectively equal to the probability density Pconfig and
the probability current density Jconfig of the quantum particle at that point.

On p. 224, he further notes that it is “… valid for systems with any number of
dimensions. The density Pconfig = |�config|2 is a well defined function of configuration
space; similarly the current Jconfig is a well defined vector field of that space.”

What is meant by his concept of a “vector field … in a configuration space …
with any number of dimensions” is never explained. Messiah also defines what he
means by a “vector field in a spacewith “any number of dimensions”, especiallywhen
some of those “dimensions”may correspond to non-classical degrees of freedom like
spin. Whatever his definition might be, it is clearly very different from the definition
of a vector field in lab-space, as is given above in the above section “Laboratory
Space and Classical Fields”. Messiah has definitely exploited Born’s ambiguity to
its limits. It should also be noted thatMessiah admits (p. 121), “Of course, the analogy
between this probability fluid should not be pushed too far. All pictures based on this
analogy contain no more than the property (IV.11).” [Messiah’s Eq. (IV.11), is the
conservation law for a classical fluid flowing in lab space.]

In a fashion similar to that used by Born (i.e. use of the probability current’s
conservation to explain particle flux conservation in Rutherford scattering), Messiah
(1961, pp. 369–380) also uses his current “concept”, along with Born’s ambiguity to
describe particle scattering, and to define scattering cross-sections. His description
of particle scattering, along with the associated illustrative Figures [Messiah (1961,
pp. 374–375)], however, describes waves propagating in lab space, and particles
moving in lab space, similarly to those in Figs. 3.1–3.7, above.

Born’s Conserved Probability Current as Re-interpreted Using
the Configuration-Space Formulation

As noted above, various textbooks firmly establish their formulation of quantum
mechanics in configuration space. These books also discuss probability density and
conserved probability current as entities that propagate in configuration space. All
follow Born’s derivation and (erroneously) ignore the fact that Green’s theorem
does not apply in configuration space, i.e. they all ignore Eq. (3.47). None of these
textbooks ever describes what is meant conceptually by the concept of “wave prop-
agation in configuration space”. None of them ever fully define what is meant by
the concept of a “vector field … in a configuration space … with any number of
dimensions.” Also recall the section “Born’s Ambiguity’s Misuse by the Lab-Space
Formulation School” above, wherein it is noted that Dicke and Wittke (1960) and
Merzbacher (1961, 1970) both admit that these ideas make no sense at all for N >
1 particle systems. It would seem evident that if a wave cannot propagate in config-
uration space (as Dicke and Wittke and Merzbacher note), it is then difficult to
understand how a current can flow in configuration space.
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Landau and Lifshitz (1958, 1965, pp. 55–58) also claim (without comment) that
a conserved probability current somehow propagates and/or flows in configuration
space, without their giving any explanation of what this actually means. Bjorken and
Drell (1964, pp. 2–9) derive a conserved probability current in configuration space,
and use it to demonstrate flux conservation for the single-particle Dirac’s equation.
They conclude “Integrating (1.20) over all space and using Green’s theorem, we
find ∂/∂t

∫
d3x ψ†ψ = 0, (1.23), which encourages the tentative interpretation of

ρ = ψ*
configψconfig as a positive definite probability density. “ They do not seem

to notice the incongruity of their simultaneous claims that while �config “has no
direct physical interpretation, …the probability interpretation requires that the sum
of positive contributions to |�config|2 for all values of (q1,config, …, sn,config) at time
t to be finite for physically acceptable wave functions �config.” How can a wave
function have “no direct physical interpretation, but simultaneously be “physically
acceptable”?

Additional confusion that arises fromBorn’s ambiguity is described in the section
“Some Observations Regarding Which School is Proper”.

Quantum Field Theory 1—Quantization of Known Classical
Fields

The third school of thought used for formulating quantummechanics is what is called
quantum field theory. It may be divided into two forms. The first form, herein called
Quantum Field Theory 1, quantizes known real classical fields like light and sound,
formulated in lab space for massless particles, that describe known real stuff in real
space–time. The second form second quantizes abstract fields like wave functions for
matter-wave fields, formulated in configuration space for massive particles, and/or
hypothetical pseudo-classical abstract fields with no observed counterpart in nature.
The second form, herein called Quantum Field Theory 2, is discussed in the section
“Quantum Field Theory 2—Second Quantization of Wave-Functions”.

There are two immediate applications of Quantum Field Theory 1. The first is to
light, electromagnetic radiation, and the electromagnetic field. The second is to sound
and vibrational displacements of atoms in solids. A primary purpose of this quanti-
zation is to provide these fields with a particle-like character. For light, the particles
are photons. For sound, the particles are phonons. The need for this quantization and
their associated particles originates with Einstein (1917). He noted that the electro-
magnetic field needs to be reformulated (quantized), in order to allow its descrip-
tion in terms of particles, that he called “directional radiation bundles” (a.k.a. light
quanta, a.k.a. corpuscles, a.k.a. photons). Einstein demonstrated that without these
directional radiation bundles, thermal equilibrium cannot be maintained between
the radiation field and a gas of molecules.



3 Laboratory-Space and Configuration-Space Formulations … 77

The (canonical) procedure for quantizing a classical system, such as a classical
field, is well defined, and its application to a lab space-classical field is straightfor-
ward. The twowell known classical fields, light and sound, are thus readily quantized
using it. First, one defines the classical system’s “degrees of freedom”. For a clas-
sical field, space is divided into an infinite number of infinitesimal cells, and the
field’s values at each cells’ lab-space position can be taken to be the fields’ degrees
of freedom. These values, in turn, can qualify as properties of classical “stuff” at the
cell’s position. Schiff (1955, p. 344) uses this method. Alternatively, Fermi (1932)
expands the field’s values using a Fourier series, and the series coefficients are then
used for the field’s degrees of freedom. Second, one uses the degrees of freedom to
form an associated Hamiltonian that defines the total energy of the system. For the
classical electromagnetic field, the total classical field energy is well known from
electromagnetic theory. For sound waves in a solid, atomic vibrational displace-
ments from rest form a field. Assuming the atoms to be harmonically bound spring-
mass systems, the total classical vibrational energy (a.k.a. thermal energy) is also
readily calculated. Once theHamiltonian has been defined, it is used in Schrödinger’s
equation to calculate the field’s quantized dynamics.

The quantization of the electromagnetic field, along with the quantum theory
of radiation and quantum electrodynamics, were originally developed by Fermi,
Dirac, Heisenberg and Pauli. The essential elements are presented in an excellent
early review article by Fermi (1932), who uses the canonical procedure to quantize
the electromagnetic field. We shall follow Fermi’s (1932) discussion in the section
“Quantum Theory of Radiation and Quantum Electrodynamics”. Photons are seen
to emerge from his formalism. The experimental demonstration that photons act like
Einstein’s directional radiation bundles is outlined in the section “Einstein’s Need
for Directional Radiation Bundles”.

A scrutiny of Fermi’s treatment reveals the existence of three very different fields
that are sometimes confused with each other via Born’s ambiguity. (Fermi does not
confuse them!) The first of these fields is the classical field itself. The field’s clas-
sical value is uniquely defined at every point in lab space. The second field is the
quantized version of this field. It is displayed via Fermi’s equations (3), (4) and
(12) in lab space using quantized mode amplitudes, us. The field’s mode amplitudes
(or values) are used as the degrees of freedom of the field. There are an infinite
number of them. A third, related, but very different field is in the form of a func-
tion formulated in an abstract vector space. It is the Schrödinger function for the
system (field plus atom), defined in configuration space by Fermi’s equations (35).
Its value depends on the field’s and atom’s degrees of freedom. It is computed as
the solution to Schrödinger’s equation for the system (Fermi’s equations (48)), and
it displays the calculated quantum dynamics of the system. Fermi carefully uses the
term “Schrödinger function” rather than the term “wave function” to prevent confu-
sion between this function and the quantized classical field’s functional dependence
on position.

Fermi’s Schrödinger function’s arguments are in configuration space, to be distin-
guished from the quantized classical field function’s argument, which is the position
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in lab space where the field may be evaluated. What does the Schrödinger func-
tion’s value mean? Similarly to Schrödinger’s so-called wave function in configura-
tion space in standard quantum mechanics, when integrated over all (configuration)
space, it gives the particle number density. When only one particle is present, this is
the integrated probability density, and it equals one, which, of course, is now equal to
the number of particles present. Unlike standard quantum mechanics, in a quantum
field theory the number of particles may, however, change with time.

Fermi attempts to show that a causal, real stuff in real space–time, behavior for
the electromagnetic field is maintained for his quantized field. Unfortunately, Fermi
fails to notice that quantization in configuration space brings in the possibility of
entanglement, whereupon entanglement of separated photons ruins any hopes for
such a result. When entanglement is present, measurements of the field at widely
separated positions in lab space unfortunately destroy any residual hopes for a causal,
real stuff in real space–time, behavior for the quantized electromagnetic field. This
fact is quite the opposite of the claims made by Bohr and Rosenfeld as outlined by
Heitler (1954, 1957, 1960, pp. 76–86), who consider only the unitary evolution of
the electromagnetic field, and do not consider its non-unitary evolution that occurs
via von Neumann’s collapse process. This important fact was first demonstrated
by experimental tests of Local Realism, first performed by Freedman and Clauser
(1972). More recent experiments by Gisin (2002) starkly demonstrate the extreme
lack of causal unitary evolution for the quantized electromagnetic field that occurs via
von Neumann’s collapse process. This latter important behavior is discussed below
in the section “von Neumann’s Collapse of the Entangled Two-Photon Quantized
Electromagnetic Field”.

Following Fermi’s (1932) treatment of the subject, many textbooks have been
written and improvements to the theory have been added. They are discussed below
in section “Improvements to Fermi’s treatment of field quantization”. Quantization
of sound waves and the emergence of phonons from the formalism is described by
Henley and Thirring (1962) and by Kittel (1953, 1956). It is performed similarly to
Fermi’s procedure for the electromagnetic field, and is not discussed here.

Quantum Theory of Radiation and Quantum Electrodynamics

In Fermi’s (1932) description, the quantization of the classical electromagnetic field
consists of two parts. The first part quantizes the radiation field. Fermi calls this part
of the theory the “quantum theory of radiation”. In the second part, Fermi attempts to
quantize an electromagnetic field of “themost general type that cannot be constructed
by simply superposing plane electromagnetic waves”. Fermi calls this second part
of the theory “quantum electrodynamics”,

Fermi’s treatment of the quantum theory of radiation begins by using the values of
the electromagnetic vector potential Alab(rlab, t) at all points rlab as the basic degrees
of freedom of the system to be quantized. He expandsAlab in terms of a set of Fourier-
series standing-wave field modes that are functions of rlab. The modes are assumed



3 Laboratory-Space and Configuration-Space Formulations … 79

to exist in a very large rectangular cavity. At the end of the solution, the walls of
the cavity are allowed to expand to infinity.20 The resulting Fourier transform then
transforms the spatial degrees of freedom of the field to allow the Fourier coefficients
for these modes to be the new transformed degrees of freedom.

In Fermi’s treatment, Maxwell’s equations describe the classical electromagnetic
field in lab space. The energy density of the electromagnetic field at every point in lab
space is defined viaMaxwell’s equations and the Lorentz force law, consistently with
Lagrange’s and Hamilton’s laws of motion. The total energy integrated over all of lab
space is correspondingly used to define a Hamiltonian function in terms of the field’s
mode amplitudes. A Schrödinger’s equation (in matrix form) for the evolution of the
mode amplitudes is then formulated. Its solution yield’s theSchrödinger function that,
in turn, displays the system’s resulting dynamics. The mode energies are all found to
act like the excitations of a simple harmonic oscillator. Quantum mechanically, the
simple harmonic oscillator has well-known solutions, consisting of a set of states,
whose energy levels are equally spaced by energy intervals, èω, where ω is the field
mode’s angular frequency. Each incremental excitation is then interpreted to consist
of the presence within the quantized electromagnetic field of a particle-like photon21

with energy èω. To handle atom–field interactions, Fermi couples the field-mode
degrees of freedom to the configuration-space degrees of freedom of one or more
atoms. Thus, when the atom’s degrees of freedom and Hamiltonian are added to that
of the radiation field, he obtains “the fundamental equation of the radiation theory”.

Fermi attempts to show that his formalism for the quantized electromagnetic
field describes real stuff in real space–time by showing that it provides reasonable
predictions for five important effects. He considers (1) Emission from an excited
atom; (2) Propagation of light in a vacuum; (3) A case of interference—the Lippman
friges, (4) The Doppler effect, and (5) The Compton effect. Fermi’s demonstration
of “Propagation of light in a vacuum” is particularly interesting. In it, he demon-
strates the self-consistency of his formalism with regard to the notion of a wave front
propagating at light speed between the two widely separated atoms. Both atoms are
coupled to the standing-wave modes of the now infinitely wide radiation field cavity
modes. One of the atoms is initially excited, and the other is not. He shows that,
following the decay of the first atom, the atom’s energy is first transferred to an exci-
tation of a phased-superposition of single photon modes of the radiation field. Fermi
then shows that because of this carefully phased-superposition, thereafter the second
atom cannot be detected in an excited state until a speed of light travel time between

20 A problem with Fermi’s method that does not seem to have been addressed by him at the time, is
that no mirrored box cavity is present in most labs. Indeed, the interiors of most laboratory appara-
tuses used to test quantum electrodynamics have light absorbing walls, and not perfectly reflecting
walls. However, when experiments are actually performed mirrored box cavity, a surprising new
wealth of physics is uncovered. See, Berman (1994), A theory with absorbing walls does not appear
to have been formulated.
21 Concerning the use of the term “interpret “, note a big jump in logic that occurs here without
experimental justification, especially if the photon, hereby defined, is to have the same particle-like
properties required by Einstein’s (1917) “directional radiation bundles.” (See the section “Einstein’s
Need for Directional Radiation Bundles”.).
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the two atoms has elapsed. Fermi thereby shows that the radiation field, which is
now comprised of a sum of an appropriately-phased set of infinitely-wide standing
waves, can produce the effects of a traveling wave “photon” with light-speed causal
effects. This important effect is true, however, only for an N = 1 particle excitation
(single photon) of the electromagnetic field. Unfortunately, Fermi did not consider
an N≥ 2 particle excitation of the field, where the hoped for causal effect fails miser-
ably. (See the section below “von Neumann’s Collapse of the Entangled Two-Photon
Quantized Electromagnetic Field”.)

Einstein’s Need for Directional Radiation Bundles

Einstein (1917) in his seminal paper “On the quantum theory of radiation” intro-
duced the concept of particle-like “photons”, that he called “directional radiation
bundles”. In that paper, he considered a gas ofmolecules interactingwith electromag-
netic radiation (light), and derived the necessary conditions for thermal equilibrium
to be maintained between them, and for the second law of thermodynamics to hold in
the face of quantum theory. He pointed out that these directional radiation bundles
(a.k.a. field quanta, a.k.a. corpuscles, a.k.a. photons) must exist. These directional
radiation bundles must be emitted and absorbed (a.k.a. created and annihilated) by
molecules in a gas totally at random. They must conserve energy and momentum in
not two but three important processes—absorption, emission, and stimulated emis-
sion. He derived the necessary rate coefficients for these three processes. They are
now known as the Einstein A and B coefficients. Einstein thus showed that the
classical electromagnetic field must be “quantized” in terms of these particle-like
bundles.

Einstein’s need for these “directional radiation bundles” is, in fact, a primary
motivation for quantizing the electromagnetic field. Correspondingly, it is a little
surprising that a particle like behavior for photons is not discussed at any signif-
icant length by Fermi, although he does demonstrate conservation of momentum
and energy between the atoms and the field. In this absence, there remained an
outstanding need to address the issue of Einstein’s required particle-like behavior
for the photons. Need for an experimental confirmation of this behavior was further
noted by Schrödinger (1927) [see also, Jauch (1971)]. Schrödinger pointed out that
that a particle-like photon (a directional radiation bundle) will be either reflected or
transmitted at a half-silvered mirror (as required by Einstein, and by the quantum
theory of radiation), while awave-like directional radiation bundle, if governed solely
by Maxwell’s equations, will be both simultaneously reflected and transmitted at a
half-silvered mirror. Schrödinger proposed that an experiment should be performed
to find out which of these two predictions is true. A first attempt by Ádám, Jánnosy,
and Varga (1955) to test Schrödinger’s idea was inconclusive, and resulted in only
a null experiment, although this fact was not noticed at the time. A fully conclusive
experimental demonstration of Einstein’s required behavior was finally performed
by Clauser (1974), wherein single photons are indeed observed either to be reflected
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or to be transmitted at a half-silvered mirror, but not both transmitted and reflected
simultaneously.

von Neumann’s Collapse of the Entangled Two-Photon
Quantized Electromagnetic Field

Fermi’s two-atom excitation demonstration of “Propagation of light in a vacuum”
was intended by him to reveal a reasonable causal behavior of the quantized elec-
tromagnetic field. His argument works very “nicely” for single-photon excitations
of the quantized electromagnetic field. On the other hand, the definition of the word
“nicely” used here depends upon one’s point of view regardingwhether or not a quan-
tized electromagnetic field retains its ability to describe real stuff in real space–time.
In Fermi’s two atom excitation scheme, a detection of the second atom in its excited
state immediately precipitates a von Neumann collapse of the spatially-extended
quantized electromagnetic field and of its carefully phased standing wave modes.
These modes are infinitely-wide and defined everywhere in space. Nonetheless, they
collapse instantaneously everywhere in space to an un-excited zero-photon excited
state. Unlike the (perhaps discernable) traveling wave-front in lab space that origi-
nally causally induces the second atom’s excitation, there is definitely no discernable
traveling wave-front in lab space that describes the field’s de-excitation via the von
Neumann collapse. Unfortunately, the collapse’s only observable effect is the field’s
loss of any ability to perform subsequent other atomic excitation.

So, no harm equals no foul? Yes foul! Fermi’s argument definitely does not
extend “nicely” for two-photon excitations of the infinitely-wide spatially-extended
quantized electromagnetic field. Tests of the CHSH and CH inequalities most often
employ two-photon polarization-entangled-state excitations of the field. Consider
what happens to such a two-photon excitation under the assumption that the quantized
radiation field is assumed to represent CH’s real stuff in real space–time. When the
field polarization of one particle-like photon component of the pair is measured, the
other particle-like photon component’s polarized field is instantaneously collapsed
via von Neumann’s collapse process of the quantum state of the field. It is instantly
reset everywhere to match the polarization of the measured polarization of the first
component photon. This collapse occurs instantaneously without Fermi’s light travel
time delay having elapsed.Unlike Fermi’s causal speed-of-light behavior of the quan-
tized field, von Neumann’s collapse process instead occurs instantaneously, with an
apparently infinite speed. Following a measurement of the polarization of the first
photon’s field, immediately thereafter the second photon’s field can then be detected
in a polarization-parallel state.

Lack of nicety gets worse! Gisin (2002) speculated that von Neumann’s collapse
process might be a real causal process in real space–time within the quantized
electromagnetic field, and that a collapse-wave-front correspondingly propagates
causally in real space–time, with a speed perhaps at or less than that of light. However,
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he importantly noted that if von Neumann’s collapse is assumed to be a real process,
its behavior is not Lorentz invariant. Thus, the possibly finite speed of any collapse-
wave-front depends uponwhat absolute reference frame the experiment is performed
in. Gisin tested his hypothesis and has experimentally set a lower limit to the speed of
the collapse-wave-front to be 2/3 107 and 3/2 104 times the speed of light, depending
on whether the choice of reference frame is taken to be that of the local “Swiss Alps”,
or that of the cosmic background radiation.

Gisin (2002) also noticed that if vonNeumann’s collapse process is assumed to be a
real process, it is possible to build an apparatus pair with each apparatus moving with
respect to the other and with respect to the two-photon source. Each apparatus then
measures the polarization of its member photon from an entangled photon pair. The
apparatus motions are carefully designed so that eachmeasurement occurs before the
other measurement takes place. Zounds! Neither measurement can then precipitate
a von Neumann collapse of the field if collapse is a causal process. Gisin thus notes
that “If each measurement happens before the other, then the quantum correlation
should disappear, however large the speed of the spooky action!” He performed the
experiment and observed that the quantum correlation persists! Double zounds. Von
Neumann’s collapse of the quantized electromagnetic field that occurs because of
its being measured really is spooky! But everyone knows that ghosts are not real,
don’t they? The conclusions that one can draw from Gisin’s experiments are that,
von Neumann’s collapse of the quantized electromagnetic field cannot be viewed
as a real causal process! The second conclusion is that, despite Fermi’s attempt to
demonstrate that a quantization of the electromagnetic field allows it to retain some
semblance of a description of CH’s real stuff in real space–time, is a total flop when
field measurements are made at remotely separated points in space. Quantization of
the field definitely renders it no longer describable as “real stuff in real space–time”,
and photons, in particular, are also not describable as CH’s real stuff in real space–
time. Of course, that same conclusion was obtained earlier from experiments that test
the CH and CHSH inequalities.

Improvements to Fermi’s Treatment of Field Quantization

There remain additional outstanding problems with Quantum Field Theory 1.
Although some have improved over time. Fermi does show that the quantum theory of
radiation is sufficient to explain many of the known experimental results to date. On
the other hand, he does not show that field quantization is necessary to explain these
experimental results. In the early 1970s, said necessity was called into question by
many workers in the field of quantum optics, when many experimental results were
found to be readily explained in terms of semi-classical radiation theory. Freedman
and Clauser (1972) showed that experiments that measured the polarization correla-
tion of entangled two-photon states did indeed demonstrate the necessity. Clauser’s
(1974) additional experiments further demonstrate a need for field quantization.
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Additionally, Fermi notes that his formalism is not without difficulties. He
observes that the second part of the theory, quantum electrodynamics, “…runs into
serious difficulty … every charge has an infinite electrostatic self-energy.” That diffi-
culty echoes back to his use of perturbation theorywhile addressing thefirst part of the
theory, the quantum theory of radiation.At the end, Fermi admits “Toall these difficul-
ties no satisfactory answer has been given.” Fermi’s method for addressing quantum
electrodynamics was summarized subsequently by Feynman (1962, pp. 3–4). Thirty
year later, Feynman commented that Fermi’s difficulties (with infinite self-energies)
leads to “one of the central problems of modern quantum electrodynamics.”

Fermi’s treatment of field quantization was chosen for analysis here because it
allows a graphic display of the existence of two very different fields,—an abstract
vector-space “field”, the Schrödinger function, whose arguments are in configura-
tion space, that is to be distinguished from the quantized classical field, whose func-
tion’s arguments indicate the position in lab space where it may be evaluated. This
choice is not meant to downplay dramatic advances made in the field of quantum
electrodynamics that were made in the late 1940s. The reader is directed to the
collection of papers on the subject in the volume Selected Papers on Quantum
Electrodynamics, Schwinger (1958) for more details on the subject. Quantization
of the electromagnetic field is also described in the latter chapters of some of the
quantummechanics textbooks discussed above, e.g. Schiff (1955, Chaps. XIII–XIV),
Merzbacher, (1961,1970, Chaps. 20–22), Messiah (1961, Chap. XXI), as well as in
other textbooks that are devoted entirely to the subject, e.g., Bjorken andDrell (1965),
Harris (1972) and Heitler (1954,1957,1960).

Some Observations Regarding Which School is “Proper”

Born’s argument space ambiguity, once revealed, provides greater insight regarding
the differences between Bohr and Einstein in their debate regarding the Einstein
Podolsky Rosen (1935) “EPR” paradox. They now appear to have been simply
talking past each other, each assuming a different argument space for a two-particle
wave function, without recognizing this fact. Bohr insisted that a measurement of
one particle of an entangled pair disturbs the whole two-particle (global) wave
function, no matter how far apart the particles are. Since there is no space–time
description for this global wave function, there is no causality problem associated
with the “disturbance” of the kind addressed by Gisin (2002). Bohr was presum-
ably assuming a configuration-space formulated wave function. Configuration-
space is a purely abstract mathematical entity—a mathematical (sometimes infinite-
dimensional) vector space. As we have noted above, it has no dependence on lab
space through which a causal disturbance (e.g. von Neumann’s) might propagate.
Einstein’s thinking was evidently conceptually anchored in lab space. His concept of
a wave function was presumably that of� lab(rlab, t), i.e. one formulated in lab space.
In such case, any such causal disturbance (e.g. von Neumann’s) must obviously
propagate as a wave through lab-space. By contrast, in Bohr’s case, �config depends



84 J. F. Clauser

only on configuration-space variables, and thus has the same value everywhere in
lab space. Its very nature is inherently non-local. Super-luminal wave propagation
in configuration-space is not prohibited, since it is totally divorced from lab space.
Indeed, as noted above, there is no wave propagation at all, let alone any wave propa-
gation from one apparatus to the other, whereupon non-local wave-function collapse
is not inconsistent with special relativity. This fact is true no matter how many parti-
cles are being described by�, but it only becomes conspicuous and bothersomewhen
at least two or more widely separated particles are being described by �config, i.e.
when its spatially constant value depends on the dynamics of both of these separated
particles.

As a result of Born’s ambiguity and the two schools of thought that emanate from
it, we have thus identified two very different, indeed incompatible, formulations of
wave functions that are used by practitioners of the art. Following von Neumann’s
and Messiah’s stern warnings, and following the observation here that lab-space
formulations are evidently refuted by experiment, we shall define wave functions
that are formulated in lab space as “improperly” formulated, and those formulated in
configuration space will be defined here as “properly” formulated.22 Wave functions
are also sometimes called” first-quantized fields, whether or not theywere “properly”
formulated.Wave functions (in standard quantummechanics, but not in quantumfield
theory) conserve particle number, independently of what space they are formulated
in. Indeed, Born’s conserved probability current (improperly formulated in lab space)
is constructed from these first-quantized improperly (lab-space) formulated fields.
Indeed, it is the basic purpose ofBorn’s current to ensure particle conservation, aswas
discussed above in the section “Born’s ProbabilityDensity andConservedProbability
Current Defined in Lab Space”. We have also noted above that Born’s ambiguity
is sometimes improperly used to interchange the meanings of these fields. When
the quantum field theory of the matter-wave field is discussed further in the section
“QuantumField Theory 2—SecondQuantization ofWave-Functions”, said improper
use of Born’s ambiguity will be seen to get much worse. Classical fields, as defined
in the section “Laboratory Space andClassical Fields” above, are by their very nature,
definable “properly” only in lab space.

A revealing of Born’s argument space ambiguity also spotlights von Neumann’s
wave function collapse. For such a collapse to make any semblance of sense, it
appears that wave functions must be formulated “properly” in configuration space,
as von Neumann and Messiah insist. Said collapse occurs everywhere in space–time
when a single particle is detected at a specific point in space–time. Just as with
the EPR collapse of a two-particle wave function, a single particle configuration-
space wave function must instantaneously collapse when, or even in anticipation of
the other particles measurement. Given that the collapse occurs only in an abstract
configuration space, there is no need for a super-luminal wave collapse to propagate
throughout lab space. Super-luminal wave propagation in configuration-space is not

22 Also, it is noted above that while lab-space formulated wave functions attempt to describe Local
Realism’s real stuff in real space–time, they cannot do so in general, andmust therefore be considered
improperly formulated.
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prohibited in configuration space. Gisin’s (2002) experiments demonstrate that fact
with stark clarity. The fact that it must collapse in anticipation of a measurement
is particularly difficult to understand, only if it is to be viewed as a real process in
(lab) space–time.

Abstract configuration space is thus inherently inscrutable by its very nature, as
the Copenhagen “interpretation” of quantum mechanics has long professed. It thus
allowsmagic to happen! In a configuration-space formulation of quantummechanics,
no objects are needed to exist as “stuff” in lab space. As seems to happen in stage
magic, objects can simply appear and disappear. Since there is no stuff needed to
be objectively present in lab space, since there are no objects, then faster than light
signaling between non-existent objects, and action at a distance between non-existent
objects is not issue. Since the configuration-space wave function does not represent
a classical field (as defined above in the section “Laboratory Space and Classical
Fields”), its value is not a function of lab space position, and the wave function,
�config, itself, has no evident spatial dependence. Correspondingly, a non-causal non-
unitary collapse that results from a measurement operation is no longer a conceptual
problem. In fact, there are no conceptual problems, because there are no conceptual
physical models to deal with. Instead, there are only abstract mathematical concepts
to deal with. It seems that one must accept the magic, however distasteful that may
be!

Quantum Field Theory 2—Second Quantization
of Wave-Functions23

In the above section “Quantum Field Theory 1—Quantization of Known Classical
Fields”, we divided quantum field theory into two forms. The first form quantizes
known real classical fields that describe known real stuff in real space–time, i.e.
stuff with real readily observed classical components—light and sound. The second
form second quantizes abstract fields like wave functions for matter-wave fields,
and/or hypothetical pseudo-classical abstract fields with no observed counterpart in
nature. A basic purpose of field quantization is to unify the description of (first)
quantized classical fields and second-quantized wave functions, in such a way that
allows a varying number of particles to be somehow associatedwith these various and
diverse fields, and to do so in a manner that allows particle creation and annihilation.

23 Definitions of the terms “first and second quantization” as used here are those given by Schiff
(1955, p. 348) in his section 46 “Quantization of the nonrelativistic Schrödinger equation”. He
says “This application implies that we are treating Eq. (6.16)as though it were a classical equation
that describes the motion of some kind of material fluid. As we shall see, the resulting quantized
field theory is equivalent to a many particle Schrodinger’s equation, like (16.1) or (32.1). For this
reason, field quantization is often called second quantization; this term implies that the transition
from classical particle mechanics to Eq. (6.16)constitutes the first quantization.” Bjorken and Drell
(1965, Chap. 13) similarly use the term in “Second Quantization of the Dirac equation”, while they
discuss in their Chap. 14. “Quantization of the electromagnetic field”.
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Unfortunately, it appears that said unification can occur only with a generous use of
Born’s ambiguity, given the wide variety of fields that various authors try to sweep
together.

In the section “Quantum Theory of Radiation and Quantum Electrodynamics” we
described how Fermi quantized a known classical field, the electromagnetic field, in
order to produce photons. Doing so, he prescribed the need for two very different field
types—those whose arguments are defined in configuration space, and those whose
arguments are defined in lab space. The first is the abstract vector-space function
that he named the Schrödinger function. Its arguments are in configuration space.
It is clearly not a classical field, as defined above in the section “Laboratory Space
and Classical Fields”. It is to be distinguished from the quantized and non-quantized
classical electromagnetic fields, whose function’s arguments indicate the position in
lab spacewhere theymay be evaluated. These very different field types are sometimes
confused with each other via Born’s ambiguity. Indeed, they have a direct parallel
to the two schools of thought we have identified and distinguished in the sections
“The lab-space formulation of quantum mechanics” and “The Configuration-Space
Formulation of Quantum Mechanics”. The primary distinction between them is in
regards to their associated argument spaces.

There at least 7mathematically distinct kinds of fields noticed in the reviewed liter-
ature on quantum field theory. Some are considered worthy of consideration for field
quantization by various authors. Some are actual classical fields that describe known
real stuff in real space–time. Some are abstract functions in a vector space. Some are
totally hypothetical in nature. Following the above definition of “proper”, it is note-
worthy that some are “properly” defined, and others are “improperly” defined. They
include the following fields:

1. Classical fields defined properly only in lab space. These include the classical
electromagnetic field that gives rise classically to light waves and quantum
mechanically to photons, and the field of vibrational displacements that gives
rise classically to sound waves and quantum mechanically to phonons. When
acting classically, these fields can host real wave motion in lab space.

2. Quantized version of field #1.(quantized as per Fermi (1932). It is defined
properly only in lab space. It can undergo non-causal non-unitary von Neumann
collapse. Case 1 fields cannot similarly collapse.

3. Fermi’s “Schrödinger function” for case #2 quantized atom(s) plus field. It is
a vector-space function defined properly only in the configuration space of
the atom or atoms and the field degrees of freedom (as per section “Quantum
Theory of Radiation and Quantum Electrodynamics”). A Schrödinger function
is similarly definable for the atom or atoms alone and for the field alone when
these entities do not interact.

4. Single-particle wave function (a.k.a. the matter-wave field) defined improperly
in lab space for a single particle, that is a solution to the lab-space improperly
defined Schrödinger, Klein Gordon and/or Dirac equations. It is the field
depicted in Figs. 3.1–3.7. It cannot be properly generalized to describeNparticle
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systems (as per the section “Quantum Theory of Radiation and Quantum Elec-
trodynamics”), although Schiff (1955, p. 341) claims that field quantization
provides a proper method for doing so.24 Henley and Thirring (1962), p. 3) also
consider such fields as suitable for field quantization.

5. Pseudo-classical,25 “classical free field”, similar to a case 4 field, that satisfies,
say, the Klein–Gordon equation. Such fields have no observed counterpart in
nature. The field is defined in lab space, although it is totally ambiguous as
to whether this definition is proper or improper. It is used by various authors,
e.g. by Bjorken and Drell (1965), and Messiah (1961, p. 960), to demonstrate
methodology for second quantizing fields with no known classical counter-
part, whereupon there is no classical way to calculate the associated energy
density. Bjorken and Drell (1965, p. 34) note that “Classically, the field ϕ(x)
is observable and its strength at a point x can be measured.” Many authors
further consider functions and define pseudo-classical fields that are typically
permanently complex and/or have non-geometrical abstract properties, such as
Dirac spinors. Sometimes, authors quantize a “real scalar field” and seem to
play ambiguously on words. They use the word “real” to mean real-valued, i.e.
having no imaginary component, rather than known to really exist in nature.
(Are ghosts real or imaginary, or even complex?) Various authors thus stretch
the limits of one’s imagination regarding what may be considered “classical”,
and/or “real”.

6. Single-particle wave function (a.k.a. the matter-wave field) defined only
properly in configuration space. It is related to the N particle wave function
using a sum of products form, as per sections “Factorization of Schrödinger’s
N-particle Configuration-Space Wave Function” and “Wave-Function Factor-
ization or Not!”. In actuality, it is already a case 3 “Schrödinger function”, as
per Fermi’s definition and usage.

7. N-particle wave function (a.k.a. the matter-wave field), defined only properly in
configuration space. In actuality, it is a “Schrödinger function” as per Fermi’s
definition andusage.Recall thatBjorken andDrell (1964, p. 2) state that properly
defined vector-space wave functions that are used as N-particle wave functions
have no direct physical interpretation. Nonetheless, Bjorken and Drell (1965,
Chap. 13) second quantize them (but only when the particles are Fermions).

Case 1 quantization of both light waves and sound waves, properly defined in
lab space, discussed above in the section “Quantum Field Theory 1—Quantization
of Known Classical Fields”, seems to make sense. First quantization of particle
motion, properly defined in configuration space, as discussed above in the section

24 Schiff (1955, p. 341) says “The field quantization technique can also be applied to a � field,
such as that described by the non-relativistic Schrödinger Eq. (6.16)or by one of the relativistic
Eqs. (42.4)or (43.3).Aswe shall see (Sec.46), this converts a one-particle theory into amany particle
theory; … Because of this equivalence, it might seem that the quantization of the fields merely
provides another formal approach to the many-particle problem. However, the new formalism can
also deal with processes that involve the creation and destruction of material particles.”
25 Let’s pretend that such a classical field exists although we have no evidence that it does.
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“TheConfiguration-Space Formulation ofQuantumMechanics”, also perhapsmakes
sense. It is totally ambiguous as to whether Case 5 first quantization of pseudo-
classical fields makes sense, given their vague definition. But, as we have argued in
the section “Quantum Field Theory 1—Quantization of Known Classical Fields”, a
configuration-space wave function is not a classical field in lab space, otherwise it
cannot undergo von Neumann collapse. Thus, it seems totally improper to second
quantize case 6 and case 7 abstract configuration-space wave functions. Indeed, the
only means to do so appears to be to use Born’s ambiguity to convert these to be
case 4 wave functions or case 5 pseudo-classical wave functions, improperly defined
in lab space, and then to proceed by pretending them to be classical fields. Born’s
ambiguity correspondingly appears to be an integral foundation of quantum field
theory of the matter-wave field. Unfortunately, it now appears also to be a major
impediment.

If the goals of classical-field quantization and second quantization of wave-
functions are to describe real-stuff in real space time, as Fermi apparently has tried
to do with the classical electromagnetic field, in terms of a variable number of spon-
taneously forming particles, then that goal evidently cannot be achieved for any kind
of field. It seems that the best that one can hope for is to describe totally abstract
stuff (including pseudo classical fields) in real space time with a variable number of
spontaneously forming particles. The new remaining problem identified here is how
is one to resolve Born’s ambiguity vis à vis second quantization of mater-wave wave
functions.

Conclusions

What then does quantummechanics not describe? Despite pretenses made in various
quantum mechanics books, quantum mechanics does not describe the dynamics of
any thing that is objectively real. Have we gotten any closer to answering the ques-
tion posed in the opening paragraph of this paper?—What do standard quantum
mechanics and quantum field theory describe? It seems that the answer is—Not
really. What quantummechanics and quantum field theory seem to describe is some-
thing other than objectively real stuff evolving in space–time. It seems that the best
that an improperly (and inconsistently) formulated form of quantum field theory for
matter-waves can offer is a description of totally abstract stuff (including pseudo-
classical fields) that evolves non-causally in real space time with perhaps a variable
number of spontaneously forming particles.

The basic conclusion obtained from a consideration of the experimental refutation
of Bell–Clauser–Horne–ShimonyLocal Realism is that any theory that describes real
stuff evolving causally in real space–time, must violate experiment for its predic-
tions for separated entangled systems, assuming that it is capable of making predic-
tions for these systems. Lab-space formulations of standard quantum mechanics
are unable to make the necessary predictions. Lab space formulations of standard
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quantum mechanics qualify as theories of Local Realism; however, such formula-
tions of quantummechanics are unable to make the necessary predictions, thereby to
reveal their own “dirty laundry”. In any case, lab-space formulated standard quantum
mechanics provides, at best, an “improper” description for matter waves, where
“propriety” instead requires the formulation in configuration space only.

A dilemma is thus revealed by this article—how does one find an “unambiguous”
and “proper” method within standard quantum mechanics and quantum field theory
to provide a variable particle number for massive particles that have no known asso-
ciated classical field. To be “unambiguous”, the method must avoid use of Born’s
ambiguity, which, in turn, erroneously considers configuration space and lab space
to be equivalent and interchangeable. Unfortunately, at present, Born’s ambiguity
appears to be an integral foundation of quantum field theory of the matter-wave
field for massive particles.

Related questions are—can we live with Born’s ambiguity, and/or equivalently,
canwe experimentally distinguish between the different lab-space and configuration-
space formulations of quantum mechanics and quantum field theory? That is, can
we have it both ways? It seems that we cannot. The configuration space formulation
seems to be required, as per the experimental refutation of Bell–Clauser–Horne–
Shimony Local Realism. The answer leaves open the remaining question identified
here—How does one resolve Born’s ambiguity vis à vis second quantization of
matter-wave wave functions.

Sadly, for those of us who had hoped to find a theory of real stuff in real space–
time, we are left with the situation wherein quantum mechanics describes abstract,
impossible-to-be-real stuff. Said stuff is described by an abstractmathematical frame-
work, wherein said stuff somehow moves and propagates perhaps stochastically (if
the words “moves” and “propagates” still retain any understandable meaning) in
an abstract multi-dimensional mathematical space that may contain non-classical
abstract components. Whatever quantum mechanics does indeed describe is sadly
very difficult to visualize.

There is one final perhaps important irony regarding the “demise” of any theory
that attempts to describe real stuff in real space–time. Said demise now includes lab-
space formulations of quantum mechanics and quantum field theory. Both Albert
Einstein and Max Born26 were a strong proponents of the quest for a lab-space
description (i.e. a. space–time description) of natural phenomena. Correspondingly,
said demise must certainly have an impact on one’s conceptual understanding of
Einstein’s theory of general relativity, if and when it is reconciled with quantum
mechanics. General relativity certainly seems to be a theory within the bounds of
Local Realism. Indeed, a fundamental tenant of general relativity is that the geometry
of space–time depends on the mass energy content of how much real stuff is present

26 This article has concentrated on Born’s quest for a space–time description of natural phenomena.
It is noteworthy that the first printing of Born’s (1933) seminal textbook predates the famous “EPR”
paper by Einstein, Podolsky, and Rosen (1935).
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in real space–time. Similarly, Stephen Hawking’s claims that information is always
conserved and is contained in an accessible volume of space–time, especially at a
black-hole boundary, seems to be based a use ofBorn’s conserved probability current,
which we have noted above is not really conserved in the real space–time framework
of general relativity.
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